
Th
e

Ba
si

cs
 o

f H
TM

L5

CHAPTER 1 The Basics of HTML5 85

Marking Your Text
The opposite of block-level elements are text-level elements. Text-level elements
allow you to apply styles to a section of content within a block. This section shows
you the text-level elements you can apply to the content in your web page.

Formatting text
The text-level elements apply predefined formats to text without the need for
CSS styling. The most popular of the text-level elements are the b and i elements,
which apply the bold and italic styles, respectively:

<p>I <i>wanted</i> the large drink size.</p>

Text-level elements are also called inline, because they appear in the same line
as the content. You can embed text-level elements to apply more than one to the
same text:

<p>I wanted the <i>large</i> drink size.</p>

When applying two or more text-level elements to text, make sure you close the
tags in the opposite order that you open them.

HTML5 supports lots of different text-level elements for using different styles
of text directly, without the help of CSS. Table 1-2 lists the text-level elements
available in HTML5.

FIGURE 1-4:
Using the hr
 element in a

web page.

86 BOOK 2 HTML5 and CSS3

As you can see in Table 1-2, you have lots of options for formatting text without
even having to write a single line of CSS code!

Using hypertext
In Book 1, Chapter 1, I mention that hyperlinks are the key to web pages. Hyper-
links are what tie all the individual web pages in your website together, allowing
site visitors to jump from one page to another.

TABLE 1-2	 HTML5 Text-Level Elements
Element Description

abbr Displays the text as an abbreviation

b Displays the text as boldface

cite Displays the text as a citation (often displayed as italic)

code Displays the text as program code (often displayed with a fixed-width font)

del Displays the text as deleted (often displayed with a strikethrough font)

dfn Displays the text as a definition term (often displayed as italic)

em Displays the text as emphasized (often displayed as italic)

i Displays the text as italic

ins Displays the text as inserted (often displayed with an underline font)

kbd Displays the text as typed from a keyboard (often as a fixed-width font)

mark Displays the text as marked (often using highlighting)

q Displays the text as quoted (often using quotes)

samp Displays the text as sample program code (often displayed with a fixed font)

small Displays the text using a smaller font than normal

strong Displays the text as strongly emphasized (often using boldface)

sub Displays the text as subscripted

sup Displays the text as superscripted

time Displays the text as a date and time value

var Displays the text as a program variable (often using italic)

Th
e

Ba
si

cs
 o

f H
TM

L5

CHAPTER 1 The Basics of HTML5 87

The element that creates a hyperlink is the anchor text-level element. At first, that
may sound somewhat counterintuitive — you’d think an anchor would keep you
in one place instead of sending you someplace else. But think of it the other way
around: The anchor element is what anchors another web page to your current
web page. Following the anchor takes you to the other web page!

Formatting a hyperlink
Because the anchor element is a text-level element, you use it to mark text inside
a block. That text then becomes the hyperlink. You add an anchor element using
the <a> tag. The anchor element is two-sided, so it has both an opening tag (<a>)
and a closing tag (). The text inside the opening and closing tags becomes the
hyperlink text.

A few different attributes are available for the <a> tag, but the most important one
is the href attribute. The href attribute specifies where the hyperlink takes your
site visitors:

Click here to search.

When a site visitor clicks the hyperlink, the browser automatically takes the visi-
tor to the referenced web page in the same browser window. If you prefer, you can
also specify the target attribute, which specifies how the browser should open
the new web page. Here are your options for the target attribute:

 » _blank: Opens the specified page in a new tab or window.

 » _self: Opens the specified page in the current tab or window. This is the
default behavior in HTML5, so it’s not necessary to add it unless you want to
for clarification in your code.

 » _parent: Opens the specified page in the parent window of a frame embed-
ded within the window. Embedded frames aren’t popular anymore in HTML5,
so this option is seldom used.

 » _top: Opens the specified page in the main window that contains the frame
embedded within other frames. This is seldom used.

You use the target attribute like this:

Click here to search.

There’s no set rule regarding how to handle opening new web pages, but generally
it’s a good idea to open other pages on your own website in the same browser tab
or window, but open remote web pages in a new tab or window. That way your
site visitors can easily get back to where they left off on your website if needed.

88 BOOK 2 HTML5 and CSS3

Displaying a hyperlink
When you specify a hyperlink in the text, the browser tries to make it stand out
from the rest of the text, as shown in Figure 1-5.

By default, browsers will display the anchor element text using a different format
than the rest of the block text:

 » Unvisited links appear underlined in blue.

 » Visited links appear underlined in purple.

 » Active links are when you click an unvisited or visited link with your mouse. When
you click your mouse, the link becomes active and appears underlined in red.

You can change these formats to your own liking using CSS styles, as I explain in
the next chapter.

Specifying a hyperlink
The href attribute defines the location of the web page that you want the browser
to open for your site visitor, but there are a few different formats you can use to
specify that location:

FIGURE 1-5:
Displaying

hypertext in a
document.

Th
e

Ba
si

cs
 o

f H
TM

L5

CHAPTER 1 The Basics of HTML5 89

 » A different location on the same document

 » A separate web page in the same website

 » A web page in a remote website

You can use hyperlinks to force the browser to jump to a specific location inside
the same web page. This is handy for long web pages that require lots of scrolling
to get to sections at the bottom of the page. To use this method, you must first
identify the locations in the web page by applying the id attribute to a block-level
element, such as a heading or a paragraph element:

<h1 id="chicago">Chicago News</h1>

To create an anchor element to jump to that section, you use the id attribute
value, preceded by a number sign or hash mark (#):

See Chicago News

When the site visitor clicks the link, the browser automatically scrolls to place the
section in the viewing area of the window.

When jumping to another web page on the same server, you don’t need to include
the full http:// address in the href attribute. Instead, you can specify a relative
address. The relative address isn’t where your uncle lives; it’s shorthand for find-
ing another file on the same web server. If the file is in the same folder on the
same server, you can just specify the filename:

Shop in our online store.

You can also place files in a subfolder under the location of the current web page.
To do that, specify the subfolder without a leading slash:

Shop in our online store.

In both cases, the browser will send an HTTP request to retrieve the file to the
same server where it downloads the original page from.

To specify a web page on a remote website, you’ll need to use an absolute address.
The absolute address specifies the location using the Uniform Resource Locator
(URL), which defines the exact location of a file on the Internet using the follow-
ing format:

protocol://host/filename

90 BOOK 2 HTML5 and CSS3

The protocol part specifies the network protocol the browser should use to
download the file. For web pages, the protocol is either http (for unencrypted
connections) or https (for encrypted connections). The host part specifies the
host name, such as www.google.com for Google. The filename part specifies the
exact folder path and filename to reach the file on the server. If you omit the file-
name, the remote web server will offer the default web page in the folder (usually,
index.html).

You can also specify local filenames using an absolute path address. Just pre-
cede the folder name with a forward slash (/). The leading forward slash tells the
server to look for the specified folder at the DocumentRoot location of the web
server, instead of in a subfolder from the current location.

Working with Characters
No, I’m not talking about Disneyland. I’m talking about the letters, numbers,
and symbols that appear on your web pages. Humans prefer to see information
as letters, words, and sentences, but computers prefer to work with numbers. To
compensate for that, programmers developed a way to represent all characters as
number codes so computers can handle them. The computer just needs a method
of mapping the number codes to characters.

Character sets
The character-to-number mapping scheme is called a character set. A character set
assigns a unique number to every character the computer needs to represent. In
the early days of computing in the United States, the American Standard Code for
Information Interchange (ASCII) became the standard character set for mapping
the English-language characters and symbols in computers.

As the computing world became global, most programs needed to support more
than just the English language. The Latin-1 and ISSO 8859-1 character sets
became popular, because they include characters for European languages. But that
still didn’t cover everything!

Because it’s supported worldwide, the HTML5 standard required more than just
European-language support. The Unicode character set supports characters from
all languages of the world; plus, it has room for expansion. Because of its huge
size, though, a subset of Unicode, called UTF-8, became more popular. UTF-8 also
supports all languages, but with a smaller footprint; it has become the standard
for HTML5.

http://www.google.com

Th
e

Ba
si

cs
 o

f H
TM

L5

CHAPTER 1 The Basics of HTML5 91

Although the HTML5 standard specifies a default character set, it’s a good idea to
specify the character set in your web pages so that you’re sure the client browser is
using the same character set to interpret your content. You do that using the meta
element. Because the meta element provides additional information about your web
page, you have to place it inside the head element section of the HTML code.

The meta element uses the single-sided <meta> tag. To specify the character set
in HTML5 you use the following format:

<meta charset="UTF-8">

If your HTML code requires a different character set, you specify it here.

The <meta> tag allows you to specify other features of your web page to the
browser so that it knows how to process the body of the web page, and identify
the content of the web page to servers that automatically scan your web pages for
search engines. I talk some more about the <meta> tag in Book 4, Chapter 4.

Special characters
The UTF-8 character set supports lots of fancy characters that you won’t find on
your keyboard, such as the copyright symbol (©), the cent symbol (¢), and the
degree symbol (°). These are commonly referred to as special characters.

You can use special characters in your web page content because they’re valid
UTF-8 characters. You just need to use a different way of specifying them. Instead
of typing these characters using your keyboard, you use a code to specify them.

HTML5 uses two types of codes to specify special characters:

 » Numeric character reference: The numeric character reference uses the
UTF-8 numeric code assigned to the character. Place an ampersand (&) and a
hash (#) in front of the character number, and a semicolon (;) after the
character number. For example, to display the copyright symbol, use the
following:

©

 » Character entity reference: The character entity reference uses a short
name to represent the character. Place an ampersand (&) in front of the
character short name, and a semicolon (;) after the character short name:

©

92 BOOK 2 HTML5 and CSS3

Both methods work equally well, so use whichever method you’re most comforta-
ble with. The list of special characters available in UTF-8 is pretty long, so I won’t
include them here. If you search the web for UTF-8 characters, you’ll find plenty
of websites that show the mappings between the UTF-8 numbers and character
short names.

Making a List (And Checking It Twice)
The world is full of lists — to-do lists, wish lists, grocery lists . . . the list just
goes on and on. It’s no surprise that the HTML5 developers created a way to easily
present lists in web pages. There are three basic types of lists available for you to
use in HTML5: unordered lists, ordered lists, and description lists. This section
covers how to use each type of list in your web pages.

Unordered lists
Some lists have no specific order to the items contained in them (like a grocery
list). In the word-processing world, these are called bulleted lists, as each item
in the list is preceded by a generic bullet icon. In HTML5, they’re referred to as
unordered lists.

The HTML5 standard uses the ul element to display an unordered list using bullets.
The ul element is a two-sided element, so you use the tag to open the list and
the tag to close the list.

You must identify each item in the list using the li element. The li element is also
a two-sided element, so you use the tag to open each item description and
the tag to close it. The overall structure for an unordered list looks like this:

 item1

 item2

 item3

Because HTML5 doesn’t care about white space in code, it’s common to indent the
list items in the definition as shown here, to help make it easier to read the code.
However, indenting isn’t necessary.

Figure 1-6 shows the default way most browsers display unordered lists in the
web page.

Th
e

Ba
si

cs
 o

f H
TM

L5

CHAPTER 1 The Basics of HTML5 93

The bullet marks are fairly generic, similar to what you’d see in most word-
processing documents. Fortunately, you can spice things up a little using CSS by
defining different types of bullets to use.

Ordered lists
Some lists have a specific order in which the items should appear and be processed.
In word-processing, these lists are called numbered lists. In HTML5, they’re called
ordered lists.

The HTML5 standard uses the ol element to display an ordered list. The ordered list
also uses the li element to mark the individual items contained in the list:

 Walk the dog.

 Eat breakfast.

 Read the paper.

 Get ready for work.

By default, browsers assign each item in the list a number, starting at 1, and
increasing for each list item, as shown in Figure 1-7.

FIGURE 1-6:
Displaying an

unordered list.

94 BOOK 2 HTML5 and CSS3

If you want the list to be in reverse order, add the reversed attribute:

<ol reversed>

If you’d like to start at a different number, add the start attribute, and specify the
starting number as the value:

<ol start="10">

If you don’t want to use numbers, there are a few other options available with the
type attribute. Table 1-3 shows the different ordered list types available.

FIGURE 1-7:
The display

default for an
ordered list.

TABLE 1-3	 Ordered List Types
Type Description

1 Numerical list (the default)

A Alphabetical list, using uppercase

a Alphabetical list, using lowercase

I Roman numerals, using uppercase

i Roman numerals, using lowercase

Th
e

Ba
si

cs
 o

f H
TM

L5

CHAPTER 1 The Basics of HTML5 95

As you can probably guess, you can also embed lists within lists:

<ol type="I">

 First item

 <ol type="A">

 Item 1, Subitem 1

 Item 1, Subitem 2

 Second item

 <ol type="A">

 Item 2, Subitem 1

 Item 2, Subitem 2

When using embedded lists, it’s very important to match up the opening and clos-
ing tags for each item in the list, as well as the lists themselves. Any mismatches
will confuse the browser and will cause unpredictable results.

Description lists
Another common use of lists is to provide descriptions for terms, such as a glos-
sary. The HTML5 standard uses description lists to provide an easy way to do that.

Description lists use the dl element to define the list but use a slightly different
method of defining the items in the list than the unordered and ordered lists. The
description list breaks the items into terms and descriptions. You define a term
using the dt two-sided element and the associated description using the dd two-
sided element.

Because it’s important to match the correct term with the correct description, be
careful to alternate between the two in the list definition:

<dl>

<dt>Baseball</dt>

<dd>A game played with bats and balls</dd>

<dt>Basketball</dt>

<dd>A game played with balls and baskets</dd>

<dt>Football</dt>

<dd>A game played with balls and goals</dd>

</dl>

Figure 1-8 shows how this table is rendered in the browser.

96 BOOK 2 HTML5 and CSS3

The browser automatically separates the terms from the descriptions in the dis-
play, making it easier to tell which is which.

Building Tables
No, don’t get out your hammer and saw. I’m talking about data tables. The world
is filled with data, and a very common use of web pages is to present that data
to the world. This section describes the data table features built into HTML5 that
you can use to easily present your data. The general process for creating a table
involves three steps:

1. Define the table element.

2. Define the table rows and columns.

3. Define the table headings.

This section walks through each of these steps to show you how to create tables
for your data.

Defining a table
To add a table to your web page, you start out with the HTML5 table element. The
table element is a two-sided element, so it opens with a <table> tag and closes
with a </table> tag:

FIGURE 1-8:
Displaying a

description list.

Th
e

Ba
si

cs
 o

f H
TM

L5

CHAPTER 1 The Basics of HTML5 97

<table>

</table>

That creates the table, but it’s not too exciting because there’s nothing in it yet.
The next step is to define cells for the data.

Prior versions of HTML added attributes to the <table> tag to define the table
appearance, such as the border type, cell spacing, and width. HTML5 has dropped
all these attributes, so avoid using them if possible. You should now define those
features using CSS styles instead.

Defining the table’s rows and columns
If you’re familiar with standard spreadsheet software, such as Microsoft Excel or
Apple Numbers, you’re used to defining tables using cells, referenced by letters
(for the columns) and numbers (for the columns). Unfortunately, HTML5 uses a
different method for defining table cells.

To build the cells in a table you must define two separate elements:

 » A row in the table: You use the tr element to define the row inside the table.
The tr element is a two-sided element, so you use the <tr> tag to open a row
and the </tr> tag to close the row.

 » The cell inside the row: Inside the row you use the td element to define
individual cells. Again, the td element is two-sided, so you use the <td> tag to
open a cell and the </td> tag to close a cell.

So, with all that info, you can create your first table. Just follow these steps:

1. Open your text editor, program editor, or IDE package and type the
following code:

<!DOCTYPE html>

<html>

<head>

<title>My First Table</title>

</head>

<body>

<h1>Bowling Scores</h1>

<table>

98 BOOK 2 HTML5 and CSS3

 <tr>

 <td>Bowler</td>

 <td>Game 1</td>

 <td>Game 2</td>

 <td>Game 3</td>

 <td>Average</td>

 </tr>

 <tr>

 <td>Rich</td>

 <td>100</td>

 <td>110</td>

 <td>95</td>

 <td>102</td>

 </tr>

 <tr>

 <td>Barbara</td>

 <td>110</td>

 <td>105</td>

 <td>103</td>

 <td>106</td>

 </tr>

 <tr>

 <td>Katie</td>

 <td>120</td>

 <td>125</td>

 <td>115</td>

 <td>120</td>

 </tr>

 <tr>

 <td>Jessica</td>

 <td>115</td>

 <td>120</td>

 <td>120</td>

 <td>118</td>

 </tr>

</table>

</body>

</html>

2. Save the file in the XAMPP DocumentRoot folder as mytable.html.

3. Make sure the XAMPP servers are running.

Th
e

Ba
si

cs
 o

f H
TM

L5

CHAPTER 1 The Basics of HTML5 99

4. Open your browser and enter the following URL:

http://localhost:8080/mytable.html

You may need to change the 8080 port number in the URL to match the
Apache web server in your setup. When you display the web page it should
look like Figure 1-9.

By default, the table doesn’t contain any gridlines, but you can change that using
CSS, as you see in the next chapter. Also, the table column headings appear just
like the data rows. You fix that next.

Defining the table headings
You can apply special formatting to table headings without the use of CSS by using
the th element instead of the td element for the heading cells:

<tr>

 <th>Bowler</th>

 <th>Game 1</th>

 <th>Game 2</th>

 <th>Game 3</th>

 <th>Average</th>

</tr>

FIGURE 1-9:
Displaying the

table in Chrome.

100 BOOK 2 HTML5 and CSS3

The th element causes the browser to display the heading cells using a bold font.

Often, in tables, you’ll run into situations where a data cell must span two or more
columns or rows. You can emulate that in your HTML5 tables using the rowspan
and colspan attributes in the <td> tag.

To span two or more rows in a single data cell, just add the rowspan attribute, and
specify the number of rows to span. For example, if all the bowlers had the same
score in the first game, you could do this:

<tr>

 <td>Rich</td>

 <td rowspan=4>100</td>

 <td>110</td>

 <td>95</td>

 <td>102</td>

</tr>

Now the second cell will span the next four rows in the table. Remember, though,
when entering data for the other three rows, you must omit the first cell of data,
because the first row will take up that space, as shown in Figure 1-10.

FIGURE 1-10:
Using the

rowspan attribute
in a table.

Th
e

Ba
si

cs
 o

f H
TM

L5

CHAPTER 1 The Basics of HTML5 101

Likewise, if one of the bowlers had the same score in all three games, you could
use the colspan attribute to combine all three columns into one cell:

<tr>

 <td>Katie</td>

 <td colspan=3>120</td>

</tr>

Now the second cell in the row will span all three data columns for that row, as
shown in Figure 1-11.

FIGURE 1-11:
Using the

colspan attribute
in a table.

CHAPTER 2 The Basics of CSS3 103

The Basics of CSS3

In the last chapter, I explain how to use HTML5 to display content on your web
page. However, when you just use HTML5, things look pretty boring! This
chapter shows you how to incorporate style into your web pages to help liven

things up (even if you’re not an artist).

First, I explain how to use CSS style sheets to style elements contained in the web
page. Then I show you how to work with styles to change the color and font of
text, make fancier lists, and spruce up your tables within your web pages. Finally,
I explain how to work with the CSS positioning features to arrange your content in
an appealing manner on the page.

Understanding Styles
When you specify an HTML5 element in your web page, the web browser decides
just how that element should look. Browsers use a default styling to determine the
difference between the text in an h1 element and the text in a blockquote element.

Fortunately, another standard is available to work with HTML5 that helps you
make your web pages unique. Back in Book 1, Chapter 1, I explain how Cascading
Style Sheets (CSS) work to style HTML5 content on the web page. That’s the key
to making your website stand out from the crowd!

Chapter 2

IN THIS CHAPTER

 » Defining styles

 » Formatting text

 » Using the box model

 » Sprucing up your tables

 » Positioning elements where you
want them

104 BOOK 2 HTML5 and CSS3

The CSS standard specifies ways to define the color, size, and font type of text that
appears on web pages. It also provides some styles for adding background colors
and images and styling other types of elements on the web page.

The CSS standard has evolved some over the years. At the time of this writing, it’s
currently at version 3 — you’ll often see it referred to as CSS3, and that’s what I
call it in this book.

Now you’re ready to take a deeper dive into just how to use CSS3 in your web
applications. This section walks through how CSS3 works and how you can use it
to make your web pages look good.

Defining the rules of CSS3
CSS3 uses rules to define how the browser should display content on the web page.
Each rule consists of two parts: a selector that defines what elements the rule
applies to and one or more declarations that define the style to apply.

The format of the CSS3 rule looks like this:

selector {declaration; declaration; ...}

In the rule definition, there are five ways to define the selector:

 » Element type: The rule applies to all elements of the specified type.

 » id attribute: The rule applies to the specific element with the specified id value.

 » class attribute: The rule applies to all elements with the specified
class value.

 » Pseudo-element: The rule applies to a specific part within an element.

 » Pseudo-class: The rule applies to elements in a specific state.

Each declaration defines a CSS3 style property and its associated value. Each prop-
erty sets a specific style (such as a color or a font) to the element the rule applies
to. You must end each declaration with a semicolon, and you can list as many
declarations as needed in the rule.

Here’s the format of the property and its value as you list them in the declaration:

property: value

In the following sections, I explain in more detail the five ways to define a selector.

Th
e

Ba
si

cs
 o

f C
SS

3

CHAPTER 2 The Basics of CSS3 105

Element type
You can apply the same styling to all elements of a specific type in your web page
by specifying the element name as the selector:

h1 {color: red;}

This rule ensures that the browser displays all h1 elements in the web page using
a red font color.

If you want to apply the same styles to multiple types of elements, you can either
list them as separate rules or group the elements together in the selector by sepa-
rating the element names with commas, like this:

h1, p {color: red;}

This rule instructs the browser to style all h1 and p elements using a red font color.

id attribute
If you need to define a rule that applies to just a single element in the web page,
use the id attribute as the selector. To specify an id attribute as the selector, place
a pound sign (#) in front of the id name:

#warning {color: red;}

To use the rule in your HTML5 code, just apply the id attribute value to the ele-
ment you need to style:

<h1 id="warning">This is a bad selection.</h1>

The browser will apply that rule to the specific element that uses the id attribute
value.

class attribute
If you need to define a rule that applies to multiple elements, but not necessarily
all the elements of that type, use the class attribute as the selector. To specify a
class attribute as the selector, place a period in front of the class name:

.warning {color: red;}

106 BOOK 2 HTML5 and CSS3

Then just apply that class attribute to whichever elements you need to style using
that rule:

<h1 class="warning">This is a bad selection.</h1>

<p class="warning">Please make another selection.</p>

As you can see from this example, you can apply the same class attribute value
to different element types, making this a very versatile way of styling sections of
your web page!

If you decide you only need to apply a rule to one particular element type of the
class, you can specify the element type in the selector before the class value:

p.warning {color: red;}

This rule will apply only to p elements with the class attribute value of warning.

Pseudo-element
The CSS standard defines a handful of special cases where you can apply styles to a
subsection of the element content, and not the entire content of an element. These
rules are called pseudo-elements.

To use a pseudo-element rule, separate the rule from the selector it applies to
using a double colon (::):

selector::pseudo-element

CSS3 supports a set of keywords for the pseudo-element names. For example, if
you want to get fancy and style the first letter of a paragraph of text differently
from the rest of the text, you can use the first-letter pseudo-element keyword:

p::first-letter {font-size: 20px}

The first-letter pseudo-element matches with only the first letter of the p ele-
ment, as shown in Figure 2-1.

CSS3 defines only a handful of pseudo-elements. Table 2-1 lists them.

There aren’t a lot of pseudo-elements available, but these few pseudo-elements
can come in handy for trying special formatting of your web pages.

Th
e

Ba
si

cs
 o

f C
SS

3

CHAPTER 2 The Basics of CSS3 107

The after and before pseudo-elements may sound a bit strange, because there’s
no content to style before or after an element. They’re most commonly used for
placing images after or before the content in the element.

Pseudo-class
A pseudo-class applies the defined styles to an element that is in a specific state on
the web page. The state refers to how the element behaves, such as buttons that
are disabled, check boxes that are checked, or input boxes that have the browser
focus.

FIGURE 2-1:
Using the
first-letter

pseudo-element
on text.

TABLE 2-1	 CSS3 Pseudo-Elements
Pseudo-Element Description

after Places an object before the selected element content

before Places an object after the selected element content

first-letter Applies the rule to the first letter of the selected element content

first-line Applies the rule to the first line of the selected element content

selection Applies the rule to the content area selected by the site visitor

108 BOOK 2 HTML5 and CSS3

These rules are commonly applied to hypertext links on the web page to help site
visitors distinguish links they’ve already visited. You do that by using a series of
four pseudo-class style rules:

 » link: Applies the rule to a normal, unvisited link

 » visited: Applies the rule to a link that the site visitor has already visited

 » hover: Applies the rule when the site visitor hovers the mouse pointer over
the link

 » active: Applies the rule when the site visitor clicks the mouse on the link

You specify pseudo-class rules using a single colon to separate it from the selector
in the rule definition:

a: link {color: orange;}

a: visited {color: purple;}

a: hover {color: green;}

a: active {color: red;}

All these pseudo-class rules apply to all the anchor elements in the web page and
apply different colors to the hyperlink text depending on the hyperlink state.

It’s extremely important to list the anchor element pseudo-class rules in the
order shown here, or they won’t work!

If you want to remove the underline that most browsers apply to hypertext links,
add the following property to the pseudo-element style rule:

text-decoration:none;

There are lots of pseudo-classes that you can use to apply rules to specific ele-
ments in the your web pages. Table 2-2 shows the list of available pseudo-classes
in CSS3.

Many of the pseudo-class style rules (such as first-child and last-child)
work with the location of an element within the Document Object Model (DOM).
Book 3, Chapter 2, discusses the DOM and how to use it to reference elements on
the web page.

Th
e

Ba
si

cs
 o

f C
SS

3

CHAPTER 2 The Basics of CSS3 109

TABLE 2-2	 The CSS3 Pseudo-Classes
Pseudo-Class Description

active The rule applies to hypertext links while the site visitor clicks them.

checked The rule applies to input check boxes and radio options that are selected
(checked).

disabled The rule applies to input elements that are disabled.

empty The rule applies to elements that have no children.

enabled The rule applies to input elements that are enabled.

first-child The rule applies to the first child element of a parent element.

first-of-type The rule applies to the first child element of the same type as the parent.

focus The rule applies to elements that have the browser focus.

hover The rule applies to elements that the mouse pointer is hovering over.

in-range The rule applies to elements whose value is within the specified range.

invalid The rule applies to elements whose value is invalid.

lang(language) The rule applies to elements with the lang attribute specified.

last-child The rule applies to the last child element of a parent element.

last-of-type The rule applies to the last child element of the same type as the parent.

link The rule applies to unvisited hypertext link elements.

not(selector) The rule applies to all elements except the specified selector elements.

nth-child(n) The rule applies to the nth child of the parent element.

nth-last-child(n) The rule applies to the nth child of the parent element counting backward from
the last element.

nth-of-type(n) The rule applies to the nth child element with the same type as the parent.

only-of-type The rule applies to every element that is the only element of the same type as
the parent.

only-child The rule applies to every element that is the same only child of a parent.

optional The rule applies to input elements that do not have the required attribute.

out-of-range The rule applies to elements with a value out of the specified range.

read-only The rule applies to elements with a readonly attribute specified.

(continued)

110 BOOK 2 HTML5 and CSS3

Applying style rules
In Book 1, Chapter 1, I discuss the different ways to apply CSS3 styles to an HTML5
document. To refresh your memory, there are three ways to do that:

 » Inline styles: Place the style properties inside the HTML5 element opening
tag, using the style attribute:

<h1 style="color: red;">Warning</h1>

 » Internal styles: Use the <style> tag to define a set of styles that apply to the
entire document:

<style>

h1 {color: red;}

</style>

 » External styles: Use an external file to contain the style definitions, and then
add the <link> tag in the HTML5 document to reference the external style
sheet:

<link rel="stylesheet" href="mystyles.css">

Note that with the inline style definitions, you leave off the selector part of the
rule. Because the rule applies only to the element that declares it, there’s no need
for the selector. With both the inline and external style sheet methods, you define
the set of rules separately within the style sheet. The great benefit of using the
external style sheet method is that you can then apply the same style sheet to all
the pages of your website!

TABLE 2-2	(continued)

Pseudo-Class Description

read-write The rule applies to elements without a readonly attribute specified.

required The rule applies to elements with a required attribute specified.

root The rule applies to the document’s root element.

target The rule applies to the current active element specified.

valid The rule applies to elements that have a valid value.

visited The rule applies to hypertext links that the site visitor has already visited.

Th
e

Ba
si

cs
 o

f C
SS

3

CHAPTER 2 The Basics of CSS3 111

You can use any of these locations to define your style rules, or you can use them
all at the same time! If two or more style rules apply to the same element on the
web page, the cascading feature of CSS3 kicks in. CSS3 defines a specific process
on how the browser applies conflicting rules to an element to ensure everything
happens in order. The next section explains how that works.

Cascading style rules
As the name suggests, if you define multiple style rules for a web page, the rules
cascade down from the lower-priority rules, which are applied first, to the higher-
priority rules, which are applied later.

Saying “down” from a lower to a higher priority may seem counterintuitive, but
it’s common jargon in CSS circles. Just remember that the higher-priority rules
take precedence over the lower-priority rules.

The CSS3 standard defines a strict process for how browsers should apply style
rules to each element. In Book 1, Chapter 1, I outline an abbreviated version of the
cascading rules. There are actually ten different rule levels that the CSS3 standard
defines for applying rules! However, most web designers don’t use all ten levels to
define rules, so things don’t usually get that complicated.

Table 2-3 shows the official CSS3 cascading rules process.

TABLE 2-3	 The CSS3 Cascading Rules Process
Rule Type Description Priority Level

Importance Rules contain the !important property and override all other rules 1

Inline Rules defined using the style attribute in an element opening tag 2

Media Rules defined for a specific media type 3

User defined Accessibility features defined in the browser by the site visitor 4

Specific selector A selector referring to an id, class, pseudo-element, or pseudo-class 5

Rule order When multiple rules apply to an element, the last rule declared wins 6

Inheritance Rules inherited from parent elements in the web page 7

Internal Rules defined in internal style sheets 8

External Rules defined in external style sheets 9

Browser default The default styles built into the browser, the lowest priority 10

112 BOOK 2 HTML5 and CSS3

Notice that accessibility features have a special place in the cascading rule order.
Many of your website visitors may have some type of viewing disability prevent-
ing them from viewing your content as you style it. Most browsers allow users to
define their own style features, such as specifying foreground and background
contrasting colors or changing the font size to make text more readable.

Now that you’ve seen how to define CSS3 rules and where to define them, the next
step is to start learning some rules to apply to your web pages. The CSS3 standard
defines a myriad of styles for you to use. Entire books have been written trying to
cover all the different rules and features, such as CSS3 For Dummies by John Paul
Mueller (Wiley). The remaining sections in this chapter walk you through some
of the more commonly used rules that you’ll want to keep in mind as you design
your dynamic web applications.

Styling Text
No place is styling more important than with the text that appears on your web
page. You can transform a dull, boring website with just a few changes to the text
styles. This section walks through the options you have available for styling text
to help liven up your website.

Setting the font
A font defines how a medium displays the characters in the content. Whether it’s
etching words into stone, setting text on paper using a printing press, or displaying
pixels on a computer monitor, fonts help control how readers interpret the content.

When you place text on your web page using HTML5, the browser selects a default
font style, size, and format based on the element type, and it uses that same set-
ting for all the text in those elements on your web page. That not only makes for
a boring web page, but can also confuse your site visitors if all the content blends
together.

This section describes how you can change the font features the browser uses to
display text in your web pages.

Finding a family
The CSS3 standard defines the font-family style property to allow you to change
the style of font. Here’s the format for the font-family property:

font-family: fontlist;

Th
e

Ba
si

cs
 o

f C
SS

3

CHAPTER 2 The Basics of CSS3 113

The fontlist value is a comma-separated list of font names. There are two ways
to specify a font in the list:

 » Using a specific font name: Specific font names require the browser to use that
specific font to display the text, such as Times New Roman, Arial, or Helvetica.
Browsers are limited to using only the fonts that are installed on the workstation,
so specifying a specific font name can be a gamble. If that font isn’t available on
the site visitor’s workstation, the browser will revert to the default font. It has
become common practice to provide several options of font names in the
font-family property. The browser will try to use the font presented first in the
list, and if that’s not available, it’ll try the next font listed, and continue down the
list. If no font is available, the browser reverts to the default font.

 » Using a generic font group: Generic font groups give the browser a little
more leeway in selecting a font to use. Instead of looking for a specific font,
the browser can use any font that’s included in the font group. CSS3 defines
the following font groups:

• cursive: A font that mimics handwritten text

• fantasy: An ornamental font used for special text

• monospace: A font that uses the same spacing for all characters

• sans-serif: A font without any ornamentation added to characters

• serif: A font that uses ornamentation at the tail of each character

It’s common practice to list specific font names first in the font list and then, as a
last resort, add a generic font group, like this:

font-family: Arial, 'Times New Roman', sans-serif;

With this rule, the browser will try to use the Arial font. If that’s not available on
the visitor’s workstation, it will try to use the Times New Roman font. If Times
New Roman is also not available, the browser will look for a font from the sans-
serif font group.

Note that for font names that contain spaces, you must enclose the name in single
quotes.

The CSS3 standard defines an exciting new feature called web fonts. Web fonts
allow you to define your own font on a server so that browsers can download them
along with the web page. I dive into using web fonts in more detail in Chapter 4
of this minibook.

114 BOOK 2 HTML5 and CSS3

Picking a size
After selecting a font style to use, the next step is to decide what size the font
should be. Browsers have built-in sizes for separating out the different header
levels, as well as standard text. However, you can change that by using the font-
size property:

font-size: size;

You’d think specifying a font size would be easy, but CSS3 actually allows you to
specify the size in one of five different methods:

 » As an absolute unit of measurement

 » As a relative unit of measurement

 » As a percentage of the space assigned to the element

 » Using a size keyword

 » Using a size keyword relative to the space assigned to the element

You specify absolute units using a specific size value of measurement. To compli-
cate things even more, CSS allows you to use six different units of measurements,
shown in Table 2-4.

The first three units of measurement shown in Table 2-4 are easily recognizable,
but the last three aren’t as common. There are 6 picas in an inch, and 72 points
in an inch. The pixel unit originally matched up to pixels on a standard computer
monitor, but with the advancement of monitor technology, that isn’t the case
anymore.

TABLE 2-4	 CSS Font-Size Absolute Units of Measurement
Unit Description

cm Centimeters

in Inches

mm Millimeters

pc Picas

pt Points

px Pixels

Th
e

Ba
si

cs
 o

f C
SS

3

CHAPTER 2 The Basics of CSS3 115

You can specify the size using either a whole number or a decimal value:

font-size: 0.25in;

font-size: 48pt;

The relative units of measurement set the size of the font relative to other
elements on the web page. Table 2-5 shows the relative size units in CSS3.

The em relative unit size is the most popular. It sizes the element relative to the
text in the web page. For example, here’s a common rule that you’ll see:

h1 {font-size: 2em;}

This tells the browser to size the h1 element twice the size of the text in the web page.
By using relative units, you can easily change the size of headings based on the size
of the text in the content. If you decide to change the font size of the text in the web
page, the headings will automatically change size to stay in the same proportion.

To make things simpler, CSS also allows you to set the text size using a human-
readable keyword. There are both absolute and relative keywords available:

 » Absolute: xx-small, x-small, small, medium, large, x-large, xx-large

 » Relative: smaller, larger

TABLE 2-5	 CSS Font-Size Relative Units of Measurement
Unit Description

ch Relative to the size of the zero character

em Relative to the size of the normal font size of the elements

ex Relative to the normal height of the font size currently used

rem Relative to the height of the root element

vh Relative to 1% of the browser window height

vw Relative to 1% of the browser window width

vmax Relative to 1% of the larger of the browser window width or height

vmin Relative to 1% of the smaller of the browser window width or height

% As a percentage of the normal element size

116 BOOK 2 HTML5 and CSS3

Using the keywords makes setting font sizes easier, but you’re still a little at the
mercy of the browser. It’s up to the browser to determine just what is a small,
medium, or large size font.

Playing with color
By default, browsers display all text in black on a white background. Things don’t
get any more boring than that! One of the first steps in livening up your website is
to change the text color scheme.

There are two CSS3 properties that you need to do that:

 » color: Selects the color the browser uses for the text font

 » background-color: Selects the color the browser uses for the background

You have a vast palette of colors to choose from for your color scheme. Usually,
it’s a good idea to pick a color scheme for your website and try to stick with that
for most of the web pages contained in the website. Often, a corporation will set
the color scheme of its website based on the colors used in the company logo.
Occasionally, you may need some content to pop out at visitors, so you’ll need to
deviate some from the scheme.

The original CSS standard provided three ways to define colors used in styles:

 » With color names: You can choose a text value from a standard list of color
names. CSS3 defines many different colors by name. If you plan on using a
standard color, most likely you can call it just by its name:

p {color: red; background-color: white;}

 » With RGB hexadecimal values: If you want to fine-tune the colors your web
page elements use, you can select the intensity of the red, green, and blue colors
based on hexadecimal values from 00 to FF. If you’re into hexadecimal numbers,
define the color as three hexadecimal values preceded by a pound sign:

p {color: #ffa500;}

The ffa500 value sets the red hue at full intensity, sets the green hue a little
lower, and turns the blue hue off, producing the orange color.

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part1 Getting Started with Web Programming
	Chapter 1 Examining the Pieces of Web Programming
	Creating a Simple Web Page
	Kicking things off with the World Wide Web
	Making sense of markup languages
	Retrieving HTML documents
	Styling

	Creating a Dynamic Web Page
	Client-side programming
	Server-side programming
	Combining client-side and server-side programming

	Storing Content

	Chapter 2 Using a Web Server
	Recognizing What’s Required
	The web server
	The PHP server
	The database server

	Considering Your Server Options
	Using a web-hosting company
	Building your own server environment
	Using premade servers

	Tweaking the Servers
	Customizing the Apache Server
	Customizing the MySQL server
	Customizing the PHP server

	Chapter 3 Building a Development Environment
	Knowing Which Tools to Avoid
	Graphical desktop tools
	Web-hosting sites
	Word processors

	Working with the Right Tools
	Text editors
	Program editors
	Integrated development environments
	Browser debuggers

	Part2 HTML5 and CSS3
	Chapter 1 The Basics of HTML5
	Diving into Document Structure
	Elements, tags, and attributes
	Document type
	Page definition
	Page sections

	Looking at the Basic HTML5 Elements
	Headings
	Text groupings
	Breaks

	Marking Your Text
	Formatting text
	Using hypertext

	Working with Characters
	Character sets
	Special characters

	Making a List (And Checking It Twice)
	Unordered lists
	Ordered lists
	Description lists

	Building Tables
	Defining a table
	Defining the table’s rows and columns
	Defining the table headings

	Chapter 2 The Basics of CSS3
	Understanding Styles
	Defining the rules of CSS3
	Applying style rules
	Cascading style rules

	Styling Text
	Setting the font
	Playing with color

	Working with the Box Model
	Styling Tables
	Table borders
	Table data

	Positioning Elements
	Putting elements in a specific place
	Floating elements

	Chapter 3 HTML5 Forms
	Understanding HTML5 Forms
	Defining a form
	Working with form fields

	Using Input Fields
	Text boxes
	Password entry
	Check boxes
	Radio buttons
	Hidden fields
	File upload
	Buttons

	Adding a Text Area
	Using Drop-Down Lists
	Enhancing HTML5 Forms
	Data lists
	Additional input fields

	Using HTML5 Data Validation
	Holding your place
	Making certain data required
	Validating data types

	Chapter 4 Advanced CSS3
	Rounding Your Corners
	Using Border Images
	Looking at the CSS3 Colors
	Playing with Color Gradients
	Linear gradients
	Radial gradients

	Adding Shadows
	Text shadows
	Box shadows

	Creating Fonts
	Focusing on font files
	Working with web fonts

	Handling Media Queries
	Using the @media command
	Dealing with CSS3 media queries
	Applying multiple style sheets

	Chapter 5 HTML5 and Multimedia
	Working with Images
	Placing images
	Styling images
	Linking images
	Working with image maps
	Using HTML5 image additions

	Playing Audio
	Embedded audio
	Digital audio formats
	Audio the HTML5 way

	Watching Videos
	Paying attention to video quality
	Looking at digital video formats
	Putting videos in your web page

	Getting Help from Streamers

	Part3 JavaScript
	Chapter 1 Introducing JavaScript
	Knowing Why You Should Use JavaScript
	Changing web page content
	Changing web page styles

	Seeing Where to Put Your JavaScript Code
	Embedding JavaScript
	Using external JavaScript files

	The Basics of JavaScript
	Working with data
	Data types
	Arrays of data
	Operators

	Controlling Program Flow
	Conditional statements
	Loops

	Working with Functions
	Creating a function
	Using a function

	Chapter 2 Advanced JavaScript Coding
	Understanding the Document Object Model
	The Document Object Model tree
	JavaScript and the Document Object Model

	Finding Your Elements
	Getting to the point
	Walking the tree

	Working with Document Object Model Form Data
	Text boxes
	Text areas
	Check boxes
	Radio buttons

	Chapter 3 Using jQuery
	Loading the jQuery Library
	Option 1: Downloading the library file to your server
	Option 2: Using a content delivery network

	Using jQuery Functions
	Finding Elements
	Replacing Data
	Working with text
	Working with HTML
	Working with attributes
	Working with form values

	Changing Styles
	Playing with properties
	Using CSS objects
	Using CSS classes

	Changing the Document Object Model
	Adding a node
	Removing a node

	Playing with Animation

	Chapter 4 Reacting to Events with JavaScript and jQuery
	Understanding Events
	Event-driven programming
	Watching the mouse
	Listening for keystrokes
	Paying attention to the page itself

	Focusing on JavaScript and Events
	Saying hello and goodbye
	Listening for mouse events
	Listening for keystrokes
	Event listeners

	Looking at jQuery and Events
	jQuery event functions
	The jQuery event handler

	Chapter 5 Troubleshooting JavaScript Programs
	Identifying Errors
	Working with Browser Developer Tools
	The DOM Explorer
	The Console
	The Debugger

	Working Around Errors

	Part4 PHP
	Chapter 1 Understanding PHP Basics
	Seeing the Benefits of PHP
	A centralized programming language
	Centralized data management

	Understanding How to Use PHP
	Embedding PHP code
	Identifying PHP pages
	Displaying output
	Handling new-line characters

	Working with PHP Variables
	Declaring variables
	Seeing which data types PHP supports
	Grouping data values with array variables

	Using PHP Operators
	Arithmetic operators
	Arithmetic shortcuts
	Boolean operators
	String operators

	Including Files
	The include() function
	The require() function

	Chapter 2 PHP Flow Control
	Using Logic Control
	The if statement
	The else statement
	The elseif statement
	The switch statement

	Looping
	The while family
	The for statement
	The foreach statement

	Building Your Own Functions
	Working with Event-Driven PHP
	Working with links
	Processing form data

	Chapter 3 PHP Libraries
	How PHP Uses Libraries
	Exploring PHP extensions
	Examining the PHP extensions
	Including extensions
	Adding additional extensions

	Text Functions
	Altering string values
	Splitting strings
	Testing string values
	Searching strings

	Math Functions
	Number theory
	Calculating logs and exponents
	Working the angles
	Hyperbolic functions
	Tracking statistics

	Date and Time Functions
	Generating dates
	Using timestamps
	Calculating dates

	Image-Handling Functions

	Chapter 4 Considering PHP Security
	Exploring PHP Vulnerabilities
	Cross-site scripting
	Data spoofing
	Invalid data
	Unauthorized file access

	PHP Vulnerability Solutions
	Sanitizing data
	Validating data

	Chapter 5 Object-Oriented PHP Programming
	Understanding the Basics of Object-Oriented Programming
	Defining a class
	Creating an object instance

	Using Magic Class Methods
	Defining mutator magic methods
	Defining accessor magic methods
	The constructor
	The destructor
	Copying objects
	Displaying objects

	Loading Classes
	Extending Classes

	Chapter 6 Sessions and Carts
	Storing Persistent Data
	The purpose of HTTP cookies
	Types of cookies
	The anatomy of a cookie
	Cookie rules

	PHP and Cookies
	Setting cookies
	Reading cookies
	Modifying and deleting cookies

	PHP and Sessions
	Starting a session
	Storing and retrieving session data
	Removing session data

	Shopping Carts
	Creating a cart
	Placing items in the cart
	Retrieving items from a cart
	Removing items from a cart
	Putting it all together

	Part5 MySQL
	Chapter 1 Introducing MySQL
	Seeing the Purpose of a Database
	How databases work
	Relational databases
	Database data types
	Data constraints
	Structured Query Language

	Presenting MySQL
	MySQL features
	Storage engines
	Data permissions

	Advanced MySQL Features
	Handling transactions
	Making sure your database is ACID compliant
	Examining the views
	Working with stored procedures
	Pulling triggers
	Working with blobs

	Chapter 2 Administering MySQL
	MySQL Administration Tools
	Working from the command line
	Using MySQL Workbench
	Using the phpMyAdmin tool

	Managing User Accounts
	Creating a user account
	Managing user privileges

	Chapter 3 Designing and Building a Database
	Managing Your Data
	The first normal form
	The second normal form
	The third normal form

	Creating Databases
	Using the MySQL command line
	Using MySQL Workbench
	Using phpMyAdmin

	Building Tables
	Working with tables using the command-line interface
	Working with tables using Workbench
	Working with tables in phpMyAdmin

	Chapter 4 Using the Database
	Working with Data
	The MySQL command-line interface
	The MySQL Workbench tool
	The phpMyAdmin tool

	Searching for Data
	The basic SELECT format
	More advanced queries

	Playing It Safe with Data
	Performing data backups
	Restoring your data

	Chapter 5 Communicating with the Database from PHP Scripts
	Database Support in PHP
	Using the mysqli Library
	Connecting to the database
	Closing the connection
	Submitting queries
	Retrieving data
	Being prepared
	Checking for errors
	Miscellaneous functions

	Putting It All Together

	Part6 Creating Object-Oriented Programs
	Chapter 1 Designing an Object-Oriented Application
	Determining Application Requirements
	Creating the Application Database
	Designing the database
	Creating the database

	Designing the Application Objects
	Designing objects
	Coding the objects in PHP

	Designing the Application Layout
	Designing web page layout
	The AuctionHelper page layout

	Coding the Website Layout
	Creating the web page template
	Creating the support files

	Chapter 2 Implementing an Object-Oriented Application
	Working with Events
	Bidder Object Events
	Listing bidders
	Adding a new bidder
	Searching for a bidder

	Item Object Events
	Listing items
	Adding a new item
	Searching for an item

	Logging Out of a Web Application
	Testing Web Applications

	Chapter 3 Using AJAX
	Getting to Know AJAX
	Communicating Using JavaScript
	Considering XMLHttpRequest class methods
	Focusing on XMLHttpRequest class properties
	Trying out AJAX

	Using the jQuery AJAX Library
	The jQuery $.ajax() function
	The jQuery $.get() function

	Transferring Data in AJAX
	Looking at the XML standard
	Using XML in PHP
	Using XML in JavaScript

	Modifying the AuctionHelper Application

	Chapter 4 Extending WordPress
	Getting Acquainted with WordPress
	What WordPress can do for you
	How to run WordPress
	Parts of a WordPress website

	Installing WordPress
	Downloading the WordPress software
	Creating the database objects
	Configuring WordPress

	Examining the Dashboard
	Using WordPress
	Exploring the World of Plugins
	WordPress APIs
	Working with plugins and widgets

	Creating Your Own Widget
	Coding the widget
	Activating the widget plugin
	Adding the widget

	Part7 Using PHP Frameworks
	Chapter 1 The MVC Method
	Getting Acquainted with MVC
	Exploring the MVC method
	Digging into the MVC components
	Communicating in MVC

	Comparing MVC to Other Web Models
	The MVP method
	The MVVM method

	Seeing How MVC Fits into N-Tier Theory
	Implementing MVC

	Chapter 2 Selecting a Framework
	Getting to Know PHP Frameworks
	Convention over configuration
	Scaffolding
	Routing
	Helper methods
	Form validation
	Support for mobile devices
	Templates
	Unit testing

	Knowing Why You Should Use a Framework
	Focusing on Popular PHP Frameworks
	CakePHP
	CodeIgniter
	Laravel
	Symfony
	Zend Framework

	Looking At Micro Frameworks
	Lumen
	Slim
	Yii

	Chapter 3 Creating an Application Using Frameworks
	Building the Template
	Initializing the application
	Exploring the files and folders
	Defining the database environment

	Creating an Application Scaffold
	Installing the scaffolding
	Exploring the scaffolding code

	Modifying the Application Scaffold
	Adding a new feature link
	Creating the controller code
	Modifying the model code
	Painting a view

	Index
	EULA

