
Th
e

Ba
si

cs
 o

f C
SS

3

CHAPTER 2 The Basics of CSS3 117

 » With the rgb() function: You can select the color using decimal values from
0 to 255 for the red, green, and blue intensities. To specify the same color
using the rgb() method, you’d use the following:

p {color: rgb(255, 165, 0);}

If you’re not picky about the shade of red you want, the first method will work
just fine. But odds are, you’ll want to be more precise in your color selection (for
example, matching the shade of red to the red in your company’s logo), so you’ll
want to use one of the other two methods. Which of the other two methods you
use is a matter of personal preference.

The updated CSS3 standard provides four new ways of working with colors in your
web pages:

 » RGBA: Adds an opacity value to the standard RGB settings

 » HSL: Defines the color as a hue, saturation, and lightness percentage

 » HSLA: Defines the color as an HSL value, plus adds an opacity value

 » Opacity: Defines a transparency value to make the element more opaque

The main addition to the CSS3 color scheme is the opacity feature. The opacity fea-
ture provides the ability to make elements transparent, or faded. The opacity value
ranges from 0.0 (fully transparent) to 1.0 (no transparency, also called opaque).

Here’s an example to demonstrate just how changing colors in elements works:

1. Open your favorite text editor, program editor, or integrated develop-
ment environment (IDE) package.

2. Enter the following code into the editor window:

<!DOCTYPE html>

<html>

<head>

<title>Testing colors in CSS3</title>

<style>

p {

 font-family: Arial, Helvetica, sans-serif;

 color: #ff0000;

 background-color: cyan;

}

118 BOOK 2 HTML5 and CSS3

h1 {

 color: rgb(255, 165, 0);

 background-color: green;

}

</style>

</head>

<body>

<h1>Testing the color scheme</h1>

<p>

The quick brown fox jumps over the lazy dog.

</p>

<h1>This is the end of the color test</h1>

</body>

</html>

3. Save the program as colortest.html in the DocumentRoot folder of your
web server.

If you’re using XAMPP, it’s c:\xampp\htdocs for Windows or /Applications/
XAMPP/htdocs for macOS.

4. Start the web server.

If you’re using XAMPP, launch the XAMPP Control Panel and then click the Start
button for the Apache web server.

5. Open your browser and go to the URL for the new file:

http://localhost:8080/colortest.html

Note: You may need to change the port in the URL to what your web
server uses.

6. Stop the web server and close the browser.

You should see in the output from your web page that the browser uses different
colors for the h1 elements and the p elements. However, notice that there’s some
whitespace between the elements, as shown in Figure 2-2.

You didn’t define any space between the p and h1 elements in the HTML5 code, so
why is that there? You may be thinking that something has gone wrong with the
browser, but actually, it’s a feature of CSS that I cover next.

Th
e

Ba
si

cs
 o

f C
SS

3

CHAPTER 2 The Basics of CSS3 119

Working with the Box Model
CSS3 handles all elements on the web page using the box model, which defines the
area inside and around the element and provides a way for you to alter the style of
those features. Figure 2-3 shows the box model defined in CSS3.

The box model defines four different sections in the element. Working from the
inside out, they are as follows:

 » Content: The text or image the element contains

 » Padding: The space around the content

FIGURE 2-2:
Displaying

elements with
different colors

in CSS3

FIGURE 2-3:
The CSS3 box

model.

120 BOOK 2 HTML5 and CSS3

 » Border: An area, usually visible, that goes around the content and padding

 » Margin: The space outside of the element border, between elements

With CSS3, you can alter the padding, margin, and border around an element to
help make it stand out in the web page. You do that using the padding, margin,
and border style properties.

Let’s correct the colortest.html code to remove the margin around the elements
and add some extra padding to see how that changes things:

1. Open the colortest.html file you created in the “Playing with color”
section in your favorite text editor, program editor, or IDE package.

2. Modify the p and h1 element styles to set the element margins to 0px
and add 10px of padding.

The styles should now look like this:

<style>

p {

 font-family: Arial, Helvetica, sans-serif;

 color: #ff0000;

 background-color: cyan;

 margin: 0px;

 padding: 10px;

}

h1 {

 color: rgb(255, 165, 0);

 background-color: green;

 margin: 0px;

 padding: 10px;

}

</style>

3. Save the updated colortest.html file.

4. Start the web server.

If you’re using XAMPP, launch the XAMPP Control Panel and then click the Start
button for the Apache web server.

5. Open your browser and go to the URL for the new file:

http://localhost:8080/colortest.html

Th
e

Ba
si

cs
 o

f C
SS

3

CHAPTER 2 The Basics of CSS3 121

Note: You may need to change the port in the URL to what your web
server uses.

6. Stop the web server and close the browser.

Figure 2-4 shows the web page this code produces.

Notice that the white space is gone and the background space around the text in
the headings and paragraph is larger. Feel free to play around with the margin
and padding numbers in the HTML5 code and watch how it changes the display
results.

Styling Tables
The previous chapter explains how to create tables using HTML5. Older versions
of HTML defined attributes in the table element to help add some features, such as
creating borders around the table cells and sizing the table cells. However, HTML5
removed all those attributes, so it’s up to CSS to provide those features.

FIGURE 2-4:
The updated

colortest.html
file output.

122 BOOK 2 HTML5 and CSS3

Table borders
When you’re presenting data in tables, you may want to create borders around the
table and around the individual cells in the table. You do that with the CSS border
property:

table {border: 1px solid black;}

The first value in the border property (1px) is the width of the border. The second
value (solid) is the type of border; you can specify dashed, dotted, double, or
solid for the border type. The third value (black) specifies the color of the border.

You can add borders around any of the table family of elements — table, th, tr,
or td. However, if you specify the border property for all of them, you’ll see dou-
ble borders around the individual cells. To prevent that from happening, add the
border-collapse property to the rule, and set its value to collapse.

If you only want to show horizontal lines between the table rows, you can use the
border-bottom property for the tr element. This only creates borders at the bot-
tom of each row.

Follow these steps to add borders around a table:

1. Open the mytable.html file that you created in the preceding chapter in
your favorite text editor, program editor, or IDE package.

If you haven’t yet read Chapter 1 of this minibook, you’ll have to turn back and
at least work through the section on tables before proceeding with these steps.
I’ll wait for you!

2. Add a style element to the head section of the document to define the
table styling rule:

<style>

 table tr td {

 border: 1px solid black;

 border-collapse: collapse;

 }

</style>

I included the border-collapse property to prevent double borders from
appearing.

3. Save the file.

Th
e

Ba
si

cs
 o

f C
SS

3

CHAPTER 2 The Basics of CSS3 123

4. Start your web server software, open your browser, and go to the
following URL:

http://localhost:8080/mytable.html

5. Close the browser and stop your web server software.

With the added stylings, you should see a single border line around each table cell
and a single border line around the entire table, as shown in Figure 2-5.

Now that you have borders around each cell, it may seem a bit more obvious how
cramped the data inside the table looks. You can do some more playing around with
sizing and positioning the text inside each cell. I cover that in the next section.

Table data
As you can see in Figure 2-5, by default, the browser creates the table cells just
large enough to contain the largest data value in the cells. That can make for a
somewhat cramped table. Fortunately, you can add a little more space around the
data in the table cells using some additional CSS properties.

FIGURE 2-5:
Adding a border

to the table.

124 BOOK 2 HTML5 and CSS3

Padding the cells
A padded cell sounds somewhat ominous, but adding the padding property to your
table cells can make a huge difference in the appearance of the table data:

table tr td {

 border: 1px solid black;

 border-collapse: collapse;

 padding: 10px;

 }

When you provide some additional space inside the table cells, you have some
more options on where the data appears within the table.

Aligning text in the cells
You can align the data to the left side, center, or right side of the cell with the
text-align property:

table th {

 border: 1px solid black;

 border-collapse: collapse;

 padding: 10px;

 text-align: center;

 }

This definition centers the text in the table header (th) elements. If you also want
to move the text upward inside the cell, use the vertical-align property.

Coloring tables
Just using the default black-and-white tables can quickly put your site visitors
to sleep! Add the color and background-color properties to your table to make
it stand out. You can apply the colors to the entire table, individual rows, or even
individual cells.

To simulate the old mainframe printer report style using alternating row colors in
the table, use the nth-child pseudo-class to style every other row in the table as
a different color, like this:

tr: nth-child(even) {

 background-color: lightgreen;

}

If you’re old enough to remember the mainframe computer report days, this
should bring back memories!

Th
e

Ba
si

cs
 o

f C
SS

3

CHAPTER 2 The Basics of CSS3 125

Another feature that comes in handy is to use the hover pseudo-class to change
the background color of an individual cell as your site visitor hovers the mouse
pointer over it:

td: hover {

 background-color: yellow;

}

Now things are really starting to get fancy!

Positioning Elements
By default, browsers place elements in the window following a set order. As the
web page defines each element, the browser places it in the window starting at the
upper-left corner of the window, proceeding from left to right, and top to bottom.

To demonstrate this, let’s run a quick test. You’ll create a web page that contains
five sections:

 » A header to display at the top of the web page

 » A footer to display at the bottom of the web page

 » A navigation section to display on the left side of the middle section

 » An aside section to display on the right side of the middle section

 » A main content section to display in the middle of the middle section

This is a pretty standard web page layout structure, which I’m sure you’ve seen
lots of times as you’ve browsed the web.

Follow these steps to run the test:

1. Open your favorite text editor, program editor, or IDE package, and enter
the following code:

<!DOCTYPE html>

<html>

<head>

<title>Positioning Test</title>

<style>

126 BOOK 2 HTML5 and CSS3

header {

 background-color: red;

 margin: 0px;

 padding: 10px;

 height: 25px;

 width: 600px;

}

nav {

 background-color: blue;

 margin: 0px;

 padding: 10px;

 height: 125px;

 width: 200px;

}

section {

 background-color: green;

 margin: 0px;

 padding: 10px;

 height: 125px;

 width: 200px;

}

aside {

 background-color: yellow;

 margin: 0px;

 padding: 10px;

 height: 125px;

 width: 200px;

}

footer {

 background-color: orange;

 margin: 0px;

 padding: 10px;

 height: 25px;

 width: 600px;

}

</style>

</head>

<body>

<header><p>This is the header</p></header>

<nav><p>Navigation</p></nav>

Th
e

Ba
si

cs
 o

f C
SS

3

CHAPTER 2 The Basics of CSS3 127

<section><p>Section</p></section>

<aside><p>Aside</p></aside>

<footer><p>This is the footer</p></footer>

</body>

</html>

2. Save the file as positiontest.html in the DocumentRoot folder of your
web server.

3. Start the web server, open your browser, and go to the following URL:

http://localhost:8080/positiontest.html

4. Close the browser and stop the web server.

This test creates a web page that contains a header section, a navigation section,
a main content section, an aside section, and a footer section. It uses the height
and width style properties to define how large each section should be and sets a
different background color for each section so you can tell them apart on the web
page. However, when you display the web page, you’ll probably be a bit disap-
pointed with the results, which are shown in Figure 2-6.

The browser positioned each of the different sections in the order you defined
them, each on top of the other. Ouch! That’s not what we wanted at all!

FIGURE 2-6:
Displaying the

web page with no
positioning.

128 BOOK 2 HTML5 and CSS3

To get the browser to place the different web page sections the way we want, we’ll
need to use some of the positioning properties available in CSS. The next sections
walk you through how to do that.

Putting elements in a specific place
Placing elements in specific locations on the web page requires using the position-
ing properties available in CSS. There are three main positioning properties that are
normally used:

 » position: Sets the position method the browser should use to place
the element

 » top: Defines the location for the top of the element

 » left: Defines the location for the left side of the element

The position property defines what method the browser uses to place the ele-
ment in the web page. There are four different positioning methods:

 » absolute: Changes the element’s position relative to the nearest positioned
element that precedes it.

 » fixed: Places the element in a fixed location in the browser window. If the site
visitor scrolls the window, the element stays in the same spot.

 » relative: Changes the element’s position relative to the default position.

 » static: Places the element in its normal location in the web page following
the default placement rules.

To use the absolute, fixed, and relative positioning methods, you need to
define the location in the browser window where the element will be placed. You
do that using the top and left properties.

Let’s change the positiontest.html test file to use absolute positioning to place
the sections. Just follow these steps:

1. Open the positiontest.html file in your favorite text editor, program
editor, or IDE package.

Th
e

Ba
si

cs
 o

f C
SS

3

CHAPTER 2 The Basics of CSS3 129

2. Modify the styles defined so they look like this:

<style>

header {

 background-color: red;

 margin: 0px;

 padding: 10px;

 height: 25px;

 width: 600px;

 position: absolute;

 top: 0px;

 left: 0px;

}

nav {

 background-color: blue;

 margin: 0px;

 padding: 10px;

 height: 125px;

 width: 200px;

 position: absolute;

 top: 46px;

 left: 0px;

}

section {

 background-color: green;

 margin: 0px;

 padding: 10px;

 height: 125px;

 width: 200px;

 position: absolute;

 top: 46px;

 left: 201px;

}

aside {

 background-color: yellow;

 margin: 0px;

 padding: 10px;

 height: 125px;

 width: 200px;

130 BOOK 2 HTML5 and CSS3

 position: absolute;

 top: 46px;

 left: 402px;

}

footer {

 background-color: orange;

 margin: 0px;

 padding: 10px;

 height: 25px;

 width: 600px;

 position: absolute;

 top: 192px;

 left: 0px;

}

</style>

3. Save the updated positiontest.html file as positiontest2.html.

4. Start your web server, open a browser, and go to the following URL:

http://localhost:8080/positiontest2.html

5. Close the browser and stop the web server.

The additional code sets the positioning method for the browser to use for each
section to absolute, which means it will place the sections at exactly the place
in the browser window you define using the top and left properties. When you
display the web page, you should see the result as shown in Figure 2-7.

Now things are starting to look like a real web page!

Floating elements
Absolute positioning has made a huge difference in how we can lay out elements
in our web pages, but it doesn’t solve all problems. You’ve probably already real-
ized that trying to figure out the exact location for each element in a compli-
cated web page would be somewhat difficult. Also, you’ll notice as you resize the
browser window that the sections stay in a fixed location and size — they don’t
expand or shrink with the browser window. Fortunately, there’s a way you can
avoid these problems.

Th
e

Ba
si

cs
 o

f C
SS

3

CHAPTER 2 The Basics of CSS3 131

CSS uses a feature called the float property to aid in positioning elements in the
web page using a more dynamic method. The float property allows you to take an
element out of the normal positioning flow in the web page and position it within
the right or left edge of its parent container element. You don’t need to calculate
the exact position for the elements within the parent.

The format of the float property is pretty simple:

float: position

The position value can be none, left, or right.

The float property is most often used to create columns in a web page layout.
Instead of using absolute positioning for the columns, you define a parent con-
tainer element, and then just float the column elements inside the parent.

Let’s give that a try with our positiontest.html example. You’ll add a div
 element to use as the container for the middle three sections (nav, section, and
aside) in the web page document. Follow these steps:

1. Open the original positiontest.html file in your favorite text editor,
program editor, or IDE package.

FIGURE 2-7:
Using absolute
positioning to

place sections in
the web page.

132 BOOK 2 HTML5 and CSS3

2. Modify the styles defined so they look like this:

<style>

header {

 background-color: red;

 margin: 0px;

 padding: 10px;

 height: 25px;

 width: 100%

}

nav {

 background-color: blue;

 margin: 0px;

 padding: 10px;

 height: 125px;

 width: 20%;

 float: left;

}

section {

 background-color: green;

 margin: 0px;

 padding: 10px;

 height: 125px;

 width: 55%;

 float: left;

}

aside {

 background-color: yellow;

 margin: 0px;

 padding: 10px;

 height: 125px;

 width: 20%;

 float: right;

}

footer {

 clear: both;

 background-color: orange;

 margin: 0px;

 padding: 10px;

Th
e

Ba
si

cs
 o

f C
SS

3

CHAPTER 2 The Basics of CSS3 133

 height: 25px;

 width: 100%;

}

</style>

3. Modify the HTML code to add a div parent element around the nav,
section, and aside elements.

That code should look like this:

<body>

<header><p>This is the header</p></header>

<div id="container">

<nav><p>Navigation</p></nav>

<section><p>Section</p></section>

<aside><p>Aside</p></aside>

</div>

<footer><p>This is the footer</p></footer>

</body>

4. Save the updated positiontest.html file as positiontest3.html.

5. Start your web server, open your browser, and go to the following URL:

http://localhost:8080/positiontest2.html

6. Close the browser and stop the web server.

When you view the resulting web page, it should look similar to Figure 2-8.

FIGURE 2-8:
Using float

positioning to
place sections in

the web page.

134 BOOK 2 HTML5 and CSS3

The float property in the nav, section, and aside elements causes them to float
within the parent div element. I gave the parent element an id attribute value of
container to help me remember its purpose. It’s not necessary for it to have an
id attribute defined because it isn’t styled by itself.

Each of the inner sections appears side by side, as long as there’s enough space
for them in the browser window. By using a percentage value for the width, this
creates what’s called a liquid layout. With a liquid layout, if you resize the browser
window, the individual section elements resize as well. If you resize the browser
window too small, the browser automatically repositions the elements so that
they all appear in the window.

CHAPTER 3 HTML5 Forms 135

HTML5 Forms

Quite possibly one of the most common ways that PHP programming helps
is by processing data entered into an HTML5 form. There are plenty of
applications that require data entry — from keeping track of your bowl-

ing team to filling out online job applications. HTML forms have been around
for a long time, and with HTML5 it’s sure to stick around for years to come.
This chapter shows you how to create forms for your web applications using the
HTML5 form features.

Understanding HTML5 Forms
A dynamic web application requires some type of interaction with the site visitors
who use it. That interaction is usually done with a form. Forms allow you to ask
your site visitor for information using many of the same input interfaces that are
commonly found in Windows and macOS systems, such as text boxes, drop-down
lists, and radio buttons.

Before you can create a form for your web application, you need to do some house-
keeping for HTML5. You need to define the form and how the browser should han-
dle the data the site visitor enters into it. This section explains just how to do that.

Chapter 3

IN THIS CHAPTER

 » Creating a data form

 » Examining the form fields

 » Looking at additions to HTML5

 » Validating forms

136 BOOK 2 HTML5 and CSS3

Defining a form
It’s probably not too surprising that the HTML element you use to create a form is
the form element. The form element has a simple enough format:

<form attributes>

 form elements

</form>

The <form> tag defines the start of the form area, which contains all the elements
that create the form fields. The </form> tag defines the end of the form area.

The form element has lots of attributes that define just how the browser handles
the data in the form. Table 3-1 shows all the attributes available.

Often, when you create a form, you don’t need to worry about setting all the attri-
butes shown in Table 3-1; you can use the standard default values. Here are the
attributes you’ll probably work with the most:

 » action: You’ll need to define the URL of the web page that will accept and
process the form data. Usually, this is a page that contains server-side
programming, such as PHP code.

 » enctype: If your form contains binary data (such as an upload file), you’ll need
to set the encoding type so the server knows there’s binary data involved with
the form data.

TABLE 3-1	 The Form Element Attributes
Attribute Description

accept-charset Specifies the character used in the form if it’s different from the web page

action Defines the URL where the browser should send the form data

autocomplete Specifies whether the browser is allowed to use the autocomplete feature

enctype Specifies the encoding the browser uses to submit the form data

method Specifies the transfer method the browser should use to send the data

name Defines a name assigned to the form

novalidate Specifies that the browser shouldn’t validate the data

target Specifies the target window for the action URL

H
TM

L5
 F

or
m

s

CHAPTER 3 HTML5 Forms 137

 » method: You’ll need to define how the browser sends the data to the server,
using either the HTTP GET method or the HTTP PUT method.

• GET: The HTTP GET method sends the form data as part of the URL to the
server. It embeds the form field names and data values together in the
URL. Often, if you fill out a form on the Internet and click the Submit
button, you’ll see a URL that looks something like this:

http://myhost.com/index.php?content=store&id=100

This means the form used the GET method to send two form fields back to
the server. Because the server needs to identify each value, the GET
method associates the form field name with each value:

content=store

id=100

These values indicate that a form field named content is set to a value of
store and a form field name id is set to a value of 100.

This method is a great way to quickly send small pieces of form data to the
server, but it isn’t recommended for larger forms. For forms that send lots
of data, you’re better off using the HTML PUT method.

• PUT: The PUT method sends the data behind the scenes in the HTTP
request packets instead of using the URL. The data isn’t seen in the
address bar of the browser; instead, it’s processed by the client browser
and server as part of the HTTP communication behind the scenes.

Just because the data isn’t easily seen doesn’t mean it’s secure. The data
sent by the PUT method is still sent in plain text in the HTTP request
message. Any person with a network sniffer can still read that data. The
only secure method of sending data is with an encrypted HTTPS session.

After you define the form and how it will send the form data, you’re ready to start
adding some form fields.

Working with form fields
The original version of HTML didn’t specify all that many form field elements
for us to use. The list of form field elements that were available are shown in
Table 3-2.

138 BOOK 2 HTML5 and CSS3

HTML5 adds a couple more form field elements to the list:

 » datalist: Provides a list of predefined options

 » keygen: Creates a public/private key pair for authentication

 » output: Creates an area to display results from a process

The following sections walk you through how to use each of these elements in
your web forms.

Using Input Fields
The input element is the most versatile of the form field elements. It provides for
a few different types of interfaces to input data. You define the type of input field
element to use by adding the type attribute to the tag:

<input type="type" attributes>

The HTML standard defines a handful of different input field types. If you’ve ever
interacted with a Windows or macOS workstation (and who hasn’t these days?),
you’re familiar with all these input types. The following sections explain how to
use each one.

Text boxes
The text box is the workhorse of the form. How many times have you filled out an
online form that asked for your name, age, address, and so on? All these single-
line form fields use the text box input type.

TABLE 3-2	 HTML Basic Form Field Elements
Field Description

button A clickable area on the web page that triggers an action

input Provides a single interface for one data value

select A list of multiple objects in a drop-down list

submit Signals to the browser to send the form data to the action URL

textarea A larger multiline box for entering larger amounts of text

	Title Page

	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part
1 Getting Started with Web Programming
	Chapter 1 Examining the Pieces of Web Programming
	Creating a Simple Web Page
	Kicking things off with the World Wide Web
	Making sense of markup languages
	Retrieving HTML documents
	Styling

	Creating a Dynamic Web Page
	Client-side programming
	Server-side programming
	Combining client-side and server-side programming

	Storing Content

	Chapter 2 Using a Web Server
	Recognizing What’s Required
	The web server
	The PHP server
	The database server

	Considering Your Server Options
	Using a web-hosting company
	Building your own server environment
	Using premade servers

	Tweaking the Servers
	Customizing the Apache Server
	Customizing the MySQL server
	Customizing the PHP server

	Chapter 3 Building a Development Environment
	Knowing Which Tools to Avoid
	Graphical desktop tools
	Web-hosting sites
	Word processors

	Working with the Right Tools
	Text editors
	Program editors
	Integrated development environments
	Browser debuggers

	Part
2 HTML5 and CSS3
	Chapter 1 The Basics of HTML5
	Diving into Document Structure
	Elements, tags, and attributes
	Document type
	Page definition
	Page sections

	Looking at the Basic HTML5 Elements
	Headings
	Text groupings
	Breaks

	Marking Your Text
	Formatting text
	Using hypertext

	Working with Characters
	Character sets
	Special characters

	Making a List (And Checking It Twice)
	Unordered lists
	Ordered lists
	Description lists

	Building Tables
	Defining a table
	Defining the table’s rows and columns
	Defining the table headings

	Chapter 2 The Basics of CSS3
	Understanding Styles
	Defining the rules of CSS3
	Applying style rules
	Cascading style rules

	Styling Text
	Setting the font
	Playing with color

	Working with the Box Model
	Styling Tables
	Table borders
	Table data

	Positioning Elements
	Putting elements in a specific place
	Floating elements

	Chapter 3 HTML5 Forms
	Understanding HTML5 Forms
	Defining a form
	Working with form fields

	Using Input Fields
	Text boxes
	Password entry
	Check boxes
	Radio buttons
	Hidden fields
	File upload
	Buttons

	Adding a Text Area
	Using Drop-Down Lists
	Enhancing HTML5 Forms
	Data lists
	Additional input fields

	Using HTML5 Data Validation
	Holding your place
	Making certain data required
	Validating data types

	Chapter 4 Advanced CSS3
	Rounding Your Corners
	Using Border Images
	Looking at the CSS3 Colors
	Playing with Color Gradients
	Linear gradients
	Radial gradients

	Adding Shadows
	Text shadows
	Box shadows

	Creating Fonts
	Focusing on font files
	Working with web fonts

	Handling Media Queries
	Using the @media command
	Dealing with CSS3 media queries
	Applying multiple style sheets

	Chapter 5 HTML5 and Multimedia
	Working with Images
	Placing images
	Styling images
	Linking images
	Working with image maps
	Using HTML5 image additions

	Playing Audio
	Embedded audio
	Digital audio formats
	Audio the HTML5 way

	Watching Videos
	Paying attention to video quality
	Looking at digital video formats
	Putting videos in your web page

	Getting Help from Streamers

	Part
3 JavaScript
	Chapter 1 Introducing JavaScript
	Knowing Why You Should Use JavaScript
	Changing web page content
	Changing web page styles

	Seeing Where to Put Your JavaScript Code
	Embedding JavaScript
	Using external JavaScript files

	The Basics of JavaScript
	Working with data
	Data types
	Arrays of data
	Operators

	Controlling Program Flow
	Conditional statements
	Loops

	Working with Functions
	Creating a function
	Using a function

	Chapter 2 Advanced JavaScript Coding
	Understanding the Document Object Model
	The Document Object Model tree
	JavaScript and the Document Object Model

	Finding Your Elements
	Getting to the point
	Walking the tree

	Working with Document Object Model Form Data
	Text boxes
	Text areas
	Check boxes
	Radio buttons

	Chapter 3 Using jQuery
	Loading the jQuery Library
	Option 1: Downloading the library file to your server
	Option 2: Using a content delivery network

	Using jQuery Functions
	Finding Elements
	Replacing Data
	Working with text
	Working with HTML
	Working with attributes
	Working with form values

	Changing Styles
	Playing with properties
	Using CSS objects
	Using CSS classes

	Changing the Document Object Model
	Adding a node
	Removing a node

	Playing with Animation

	Chapter 4 Reacting to Events with JavaScript and jQuery
	Understanding Events
	Event-driven programming
	Watching the mouse
	Listening for keystrokes
	Paying attention to the page itself

	Focusing on JavaScript and Events
	Saying hello and goodbye
	Listening for mouse events
	Listening for keystrokes
	Event listeners

	Looking at jQuery and Events
	jQuery event functions
	The jQuery event handler

	Chapter 5 Troubleshooting JavaScript Programs
	Identifying Errors
	Working with Browser Developer Tools
	The DOM Explorer
	The Console
	The Debugger

	Working Around Errors

	Part
4 PHP
	Chapter 1 Understanding PHP Basics
	Seeing the Benefits of PHP
	A centralized programming language
	Centralized data management

	Understanding How to Use PHP
	Embedding PHP code
	Identifying PHP pages
	Displaying output
	Handling new-line characters

	Working with PHP Variables
	Declaring variables
	Seeing which data types PHP supports
	Grouping data values with array variables

	Using PHP Operators
	Arithmetic operators
	Arithmetic shortcuts
	Boolean operators
	String operators

	Including Files
	The include() function
	The require() function

	Chapter 2 PHP Flow Control
	Using Logic Control
	The if statement
	The else statement
	The elseif statement
	The switch statement

	Looping
	The while family
	The for statement
	The foreach statement

	Building Your Own Functions
	Working with Event-Driven PHP
	Working with links
	Processing form data

	Chapter 3 PHP Libraries
	How PHP Uses Libraries
	Exploring PHP extensions
	Examining the PHP extensions
	Including extensions
	Adding additional extensions

	Text Functions
	Altering string values
	Splitting strings
	Testing string values
	Searching strings

	Math Functions
	Number theory
	Calculating logs and exponents
	Working the angles
	Hyperbolic functions
	Tracking statistics

	Date and Time Functions
	Generating dates
	Using timestamps
	Calculating dates

	Image-Handling Functions

	Chapter 4 Considering PHP Security
	Exploring PHP Vulnerabilities
	Cross-site scripting
	Data spoofing
	Invalid data
	Unauthorized file access

	PHP Vulnerability Solutions
	Sanitizing data
	Validating data

	Chapter 5 Object-Oriented PHP Programming
	Understanding the Basics of Object-Oriented Programming
	Defining a class
	Creating an object instance

	Using Magic Class Methods
	Defining mutator magic methods
	Defining accessor magic methods
	The constructor
	The destructor
	Copying objects
	Displaying objects

	Loading Classes
	Extending Classes

	Chapter 6 Sessions and Carts
	Storing Persistent Data
	The purpose of HTTP cookies
	Types of cookies
	The anatomy of a cookie
	Cookie rules

	PHP and Cookies
	Setting cookies
	Reading cookies
	Modifying and deleting cookies

	PHP and Sessions
	Starting a session
	Storing and retrieving session data
	Removing session data

	Shopping Carts
	Creating a cart
	Placing items in the cart
	Retrieving items from a cart
	Removing items from a cart
	Putting it all together

	Part
5 MySQL
	Chapter 1 Introducing MySQL
	Seeing the Purpose of a Database
	How databases work
	Relational databases
	Database data types
	Data constraints
	Structured Query Language

	Presenting MySQL
	MySQL features
	Storage engines
	Data permissions

	Advanced MySQL Features
	Handling transactions
	Making sure your database is ACID compliant
	Examining the views
	Working with stored procedures
	Pulling triggers
	Working with blobs

	Chapter 2 Administering MySQL
	MySQL Administration Tools
	Working from the command line
	Using MySQL Workbench
	Using the phpMyAdmin tool

	Managing User Accounts
	Creating a user account
	Managing user privileges

	Chapter 3 Designing and Building a Database
	Managing Your Data
	The first normal form
	The second normal form
	The third normal form

	Creating Databases
	Using the MySQL command line
	Using MySQL Workbench
	Using phpMyAdmin

	Building Tables
	Working with tables using the command-line interface
	Working with tables using Workbench
	Working with tables in phpMyAdmin

	Chapter 4 Using the Database
	Working with Data
	The MySQL command-line interface
	The MySQL Workbench tool
	The phpMyAdmin tool

	Searching for Data
	The basic SELECT format
	More advanced queries

	Playing It Safe with Data
	Performing data backups
	Restoring your data

	Chapter 5 Communicating with the Database from PHP Scripts
	Database Support in PHP
	Using the mysqli Library
	Connecting to the database
	Closing the connection
	Submitting queries
	Retrieving data
	Being prepared
	Checking for errors
	Miscellaneous functions

	Putting It All Together

	Part
6 Creating Object-Oriented Programs
	Chapter 1 Designing an Object-Oriented Application
	Determining Application Requirements
	Creating the Application Database
	Designing the database
	Creating the database

	Designing the Application Objects
	Designing objects
	Coding the objects in PHP

	Designing the Application Layout
	Designing web page layout
	The AuctionHelper page layout

	Coding the Website Layout
	Creating the web page template
	Creating the support files

	Chapter 2 Implementing an Object-Oriented Application
	Working with Events
	Bidder Object Events
	Listing bidders
	Adding a new bidder
	Searching for a bidder

	Item Object Events
	Listing items
	Adding a new item
	Searching for an item

	Logging Out of a Web Application
	Testing Web Applications

	Chapter 3 Using AJAX
	Getting to Know AJAX
	Communicating Using JavaScript
	Considering XMLHttpRequest class methods
	Focusing on XMLHttpRequest class properties
	Trying out AJAX

	Using the jQuery AJAX Library
	The jQuery $.ajax() function
	The jQuery $.get() function

	Transferring Data in AJAX
	Looking at the XML standard
	Using XML in PHP
	Using XML in JavaScript

	Modifying the AuctionHelper Application

	Chapter 4 Extending WordPress
	Getting Acquainted with WordPress
	What WordPress can do for you
	How to run WordPress
	Parts of a WordPress website

	Installing WordPress
	Downloading the WordPress software
	Creating the database objects
	Configuring WordPress

	Examining the Dashboard
	Using WordPress
	Exploring the World of Plugins
	WordPress APIs
	Working with plugins and widgets

	Creating Your Own Widget
	Coding the widget
	Activating the widget plugin
	Adding the widget

	Part
7 Using PHP Frameworks
	Chapter 1 The MVC Method
	Getting Acquainted with MVC
	Exploring the MVC method
	Digging into the MVC components
	Communicating in MVC

	Comparing MVC to Other Web Models
	The MVP method
	The MVVM method

	Seeing How MVC Fits into N-Tier Theory
	Implementing MVC

	Chapter 2 Selecting a Framework
	Getting to Know PHP Frameworks
	Convention over configuration
	Scaffolding
	Routing
	Helper methods
	Form validation
	Support for mobile devices
	Templates
	Unit testing

	Knowing Why You Should Use a Framework
	Focusing on Popular PHP Frameworks
	CakePHP
	CodeIgniter
	Laravel
	Symfony
	Zend Framework

	Looking At Micro Frameworks
	Lumen
	Slim
	Yii

	Chapter 3 Creating an Application Using Frameworks
	Building the Template
	Initializing the application
	Exploring the files and folders
	Defining the database environment

	Creating an Application Scaffold
	Installing the scaffolding
	Exploring the scaffolding code

	Modifying the Application Scaffold
	Adding a new feature link
	Creating the controller code
	Modifying the model code
	Painting a view

	Index
	EULA

