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 » With the rgb() function: You can select the color using decimal values from 
0 to 255 for the red, green, and blue intensities. To specify the same color 
using the rgb() method, you’d use the following:

p {color: rgb(255, 165, 0);}

If you’re not picky about the shade of red you want, the first method will work 
just fine. But odds are, you’ll want to be more precise in your color selection (for 
example, matching the shade of red to the red in your company’s logo), so you’ll 
want to use one of the other two methods. Which of the other two methods you 
use is a matter of personal preference.

The updated CSS3 standard provides four new ways of working with colors in your 
web pages:

 » RGBA: Adds an opacity value to the standard RGB settings

 » HSL: Defines the color as a hue, saturation, and lightness percentage

 » HSLA: Defines the color as an HSL value, plus adds an opacity value

 » Opacity: Defines a transparency value to make the element more opaque

The main addition to the CSS3 color scheme is the opacity feature. The opacity fea-
ture provides the ability to make elements transparent, or faded. The opacity value 
ranges from 0.0 (fully transparent) to 1.0 (no transparency, also called opaque).

Here’s an example to demonstrate just how changing colors in elements works:

1. Open your favorite text editor, program editor, or integrated develop-
ment environment (IDE) package.

2. Enter the following code into the editor window:

<!DOCTYPE html>

<html>

<head>

<title>Testing colors in CSS3</title>

<style>

p {

    font-family: Arial, Helvetica, sans-serif;

    color: #ff0000;

    background-color: cyan;

} 
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h1 {

    color: rgb(255, 165, 0);

    background-color: green;

}

</style>

</head>

<body>

<h1>Testing the color scheme</h1>

<p>

The quick brown fox jumps over the lazy dog.

</p>

<h1>This is the end of the color test</h1>

</body>

</html>

3. Save the program as colortest.html in the DocumentRoot folder of your 
web server.

If you’re using XAMPP, it’s c:\xampp\htdocs for Windows or /Applications/
XAMPP/htdocs for macOS.

4. Start the web server.

If you’re using XAMPP, launch the XAMPP Control Panel and then click the Start 
button for the Apache web server.

5. Open your browser and go to the URL for the new file:

http://localhost:8080/colortest.html

Note: You may need to change the port in the URL to what your web 
server uses.

6. Stop the web server and close the browser.

You should see in the output from your web page that the browser uses different 
colors for the h1 elements and the p elements. However, notice that there’s some 
whitespace between the elements, as shown in Figure 2-2.

You didn’t define any space between the p and h1 elements in the HTML5 code, so 
why is that there? You may be thinking that something has gone wrong with the 
browser, but actually, it’s a feature of CSS that I cover next.
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Working with the Box Model
CSS3 handles all elements on the web page using the box model, which defines the 
area inside and around the element and provides a way for you to alter the style of 
those features. Figure 2-3 shows the box model defined in CSS3.

The box model defines four different sections in the element. Working from the 
inside out, they are as follows:

 » Content: The text or image the element contains

 » Padding: The space around the content

FIGURE 2-2:  
Displaying 

elements with 
different colors 

in CSS3

FIGURE 2-3:  
The CSS3 box 

model.
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 » Border: An area, usually visible, that goes around the content and padding

 » Margin: The space outside of the element border, between elements

With CSS3, you can alter the padding, margin, and border around an element to 
help make it stand out in the web page. You do that using the padding, margin, 
and border style properties.

Let’s correct the colortest.html code to remove the margin around the elements 
and add some extra padding to see how that changes things:

1. Open the colortest.html file you created in the “Playing with color” 
section in your favorite text editor, program editor, or IDE package.

2. Modify the p and h1 element styles to set the element margins to 0px 
and add 10px of padding.

The styles should now look like this:

<style>

p {

    font-family: Arial, Helvetica, sans-serif;

    color: #ff0000;

    background-color: cyan;

    margin: 0px;

    padding: 10px;

}

 

h1 {

    color: rgb(255, 165, 0);

    background-color: green;

    margin: 0px;

    padding: 10px;

}

</style>

3. Save the updated colortest.html file.

4. Start the web server.

If you’re using XAMPP, launch the XAMPP Control Panel and then click the Start 
button for the Apache web server.

5. Open your browser and go to the URL for the new file:

http://localhost:8080/colortest.html
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Note: You may need to change the port in the URL to what your web  
server uses.

6. Stop the web server and close the browser.

Figure 2-4 shows the web page this code produces.

Notice that the white space is gone and the background space around the text in 
the headings and paragraph is larger. Feel free to play around with the margin 
and padding numbers in the HTML5 code and watch how it changes the display 
results.

Styling Tables
The previous chapter explains how to create tables using HTML5. Older versions 
of HTML defined attributes in the table element to help add some features, such as 
creating borders around the table cells and sizing the table cells. However, HTML5 
removed all those attributes, so it’s up to CSS to provide those features.

FIGURE 2-4:  
The updated 

colortest.html 
file output.
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Table borders
When you’re presenting data in tables, you may want to create borders around the 
table and around the individual cells in the table. You do that with the CSS border 
property:

table {border: 1px solid black;}

The first value in the border property (1px) is the width of the border. The second 
value (solid) is the type of border; you can specify dashed, dotted, double, or 
solid for the border type. The third value (black) specifies the color of the border.

You can add borders around any of the table family of elements — table, th, tr, 
or td. However, if you specify the border property for all of them, you’ll see dou-
ble borders around the individual cells. To prevent that from happening, add the  
border-collapse property to the rule, and set its value to collapse.

If you only want to show horizontal lines between the table rows, you can use the 
border-bottom property for the tr element. This only creates borders at the bot-
tom of each row.

Follow these steps to add borders around a table:

1. Open the mytable.html file that you created in the preceding chapter in 
your favorite text editor, program editor, or IDE package.

If you haven’t yet read Chapter 1 of this minibook, you’ll have to turn back and 
at least work through the section on tables before proceeding with these steps. 
I’ll wait for you!

2. Add a style element to the head section of the document to define the 
table styling rule:

<style>

    table tr td {

        border: 1px solid black;

        border-collapse: collapse;

    }

</style>

I included the border-collapse property to prevent double borders from 
appearing.

3. Save the file.
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4. Start your web server software, open your browser, and go to the 
following URL:

http://localhost:8080/mytable.html

5. Close the browser and stop your web server software.

With the added stylings, you should see a single border line around each table cell 
and a single border line around the entire table, as shown in Figure 2-5.

Now that you have borders around each cell, it may seem a bit more obvious how 
cramped the data inside the table looks. You can do some more playing around with 
sizing and positioning the text inside each cell. I cover that in the next section.

Table data
As you can see in Figure 2-5, by default, the browser creates the table cells just 
large enough to contain the largest data value in the cells. That can make for a 
somewhat cramped table. Fortunately, you can add a little more space around the 
data in the table cells using some additional CSS properties.

FIGURE 2-5:  
Adding a border 

to the table.
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Padding the cells
A padded cell sounds somewhat ominous, but adding the padding property to your 
table cells can make a huge difference in the appearance of the table data:

table tr td {

        border: 1px solid black;

        border-collapse: collapse;

        padding: 10px;

    }

When you provide some additional space inside the table cells, you have some 
more options on where the data appears within the table.

Aligning text in the cells
You can align the data to the left side, center, or right side of the cell with the 
text-align property:

table th {

        border: 1px solid black;

        border-collapse: collapse;

        padding: 10px;

        text-align: center;

    }

This definition centers the text in the table header (th) elements. If you also want 
to move the text upward inside the cell, use the vertical-align property.

Coloring tables
Just using the default black-and-white tables can quickly put your site visitors 
to sleep! Add the color and background-color properties to your table to make 
it stand out. You can apply the colors to the entire table, individual rows, or even 
individual cells.

To simulate the old mainframe printer report style using alternating row colors in 
the table, use the nth-child pseudo-class to style every other row in the table as 
a different color, like this:

tr: nth-child(even) {

    background-color: lightgreen;

}

If you’re old enough to remember the mainframe computer report days, this 
should bring back memories!
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Another feature that comes in handy is to use the hover pseudo-class to change 
the background color of an individual cell as your site visitor hovers the mouse 
pointer over it:

td: hover {

    background-color: yellow;

}

Now things are really starting to get fancy!

Positioning Elements
By default, browsers place elements in the window following a set order. As the 
web page defines each element, the browser places it in the window starting at the 
upper-left corner of the window, proceeding from left to right, and top to bottom.

To demonstrate this, let’s run a quick test. You’ll create a web page that contains 
five sections:

 » A header to display at the top of the web page

 » A footer to display at the bottom of the web page

 » A navigation section to display on the left side of the middle section

 » An aside section to display on the right side of the middle section

 » A main content section to display in the middle of the middle section

This is a pretty standard web page layout structure, which I’m sure you’ve seen 
lots of times as you’ve browsed the web.

Follow these steps to run the test:

1. Open your favorite text editor, program editor, or IDE package, and enter 
the following code:

<!DOCTYPE html>

<html>

<head>

<title>Positioning Test</title>

<style> 
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header {

    background-color: red;

    margin: 0px;

    padding: 10px;

    height: 25px;

    width: 600px;

}

 

nav {

    background-color: blue;

    margin: 0px;

    padding: 10px;

    height: 125px;

    width: 200px;

}

 

section {

    background-color: green;

    margin: 0px;

    padding: 10px;

    height: 125px;

    width: 200px;

}

 

aside {

    background-color: yellow;

    margin: 0px;

    padding: 10px;

    height: 125px;

    width: 200px;

}

 

footer {

    background-color: orange;

    margin: 0px;

    padding: 10px;

    height: 25px;

    width: 600px;

}

</style>

</head>

<body>

<header><p>This is the header</p></header>

<nav><p>Navigation</p></nav>
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<section><p>Section</p></section>

<aside><p>Aside</p></aside>

<footer><p>This is the footer</p></footer>

</body>

</html>

2. Save the file as positiontest.html in the DocumentRoot folder of your 
web server.

3. Start the web server, open your browser, and go to the following URL:

http://localhost:8080/positiontest.html

4. Close the browser and stop the web server.

This test creates a web page that contains a header section, a navigation section, 
a main content section, an aside section, and a footer section. It uses the height 
and width style properties to define how large each section should be and sets a 
different background color for each section so you can tell them apart on the web 
page. However, when you display the web page, you’ll probably be a bit disap-
pointed with the results, which are shown in Figure 2-6.

The browser positioned each of the different sections in the order you defined 
them, each on top of the other. Ouch! That’s not what we wanted at all!

FIGURE 2-6:  
Displaying the 

web page with no 
positioning.
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To get the browser to place the different web page sections the way we want, we’ll 
need to use some of the positioning properties available in CSS. The next sections 
walk you through how to do that.

Putting elements in a specific place
Placing elements in specific locations on the web page requires using the position-
ing properties available in CSS. There are three main positioning properties that are 
normally used:

 » position: Sets the position method the browser should use to place 
the element

 » top: Defines the location for the top of the element

 » left: Defines the location for the left side of the element

The position property defines what method the browser uses to place the ele-
ment in the web page. There are four different positioning methods:

 » absolute: Changes the element’s position relative to the nearest positioned 
element that precedes it.

 » fixed: Places the element in a fixed location in the browser window. If the site 
visitor scrolls the window, the element stays in the same spot.

 » relative: Changes the element’s position relative to the default position.

 » static: Places the element in its normal location in the web page following 
the default placement rules.

To use the absolute, fixed, and relative positioning methods, you need to 
define the location in the browser window where the element will be placed. You 
do that using the top and left properties.

Let’s change the positiontest.html test file to use absolute positioning to place 
the sections. Just follow these steps:

1. Open the positiontest.html file in your favorite text editor, program 
editor, or IDE package.
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2. Modify the styles defined so they look like this:

<style>

 

header {

    background-color: red;

    margin: 0px;

    padding: 10px;

    height: 25px;

    width: 600px;

    position: absolute;

    top: 0px;

    left: 0px;

}

 

nav {

    background-color: blue;

    margin: 0px;

    padding: 10px;

    height: 125px;

    width: 200px;

    position: absolute;

    top: 46px;

    left: 0px;

}

 

section {

    background-color: green;

    margin: 0px;

    padding: 10px;

    height: 125px;

    width: 200px;

    position: absolute;

    top: 46px;

    left: 201px;

}

 

aside {

    background-color: yellow;

    margin: 0px;

    padding: 10px;

    height: 125px;

    width: 200px;
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    position: absolute;

    top: 46px;

    left: 402px;

}

 

footer {

    background-color: orange;

    margin: 0px;

    padding: 10px;

    height: 25px;

    width: 600px;

    position: absolute;

    top: 192px;

    left: 0px;

}

</style>

3. Save the updated positiontest.html file as positiontest2.html.

4. Start your web server, open a browser, and go to the following URL:

http://localhost:8080/positiontest2.html

5. Close the browser and stop the web server.

The additional code sets the positioning method for the browser to use for each 
section to absolute, which means it will place the sections at exactly the place 
in the browser window you define using the top and left properties. When you 
display the web page, you should see the result as shown in Figure 2-7.

Now things are starting to look like a real web page!

Floating elements
Absolute positioning has made a huge difference in how we can lay out elements 
in our web pages, but it doesn’t solve all problems. You’ve probably already real-
ized that trying to figure out the exact location for each element in a compli-
cated web page would be somewhat difficult. Also, you’ll notice as you resize the 
browser window that the sections stay in a fixed location and size — they don’t 
expand or shrink with the browser window. Fortunately, there’s a way you can 
avoid these problems.
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CSS uses a feature called the float property to aid in positioning elements in the 
web page using a more dynamic method. The float property allows you to take an 
element out of the normal positioning flow in the web page and position it within 
the right or left edge of its parent container element. You don’t need to calculate 
the exact position for the elements within the parent.

The format of the float property is pretty simple:

float: position

The position value can be none, left, or right.

The float property is most often used to create columns in a web page layout. 
Instead of using absolute positioning for the columns, you define a parent con-
tainer element, and then just float the column elements inside the parent.

Let’s give that a try with our positiontest.html example. You’ll add a div 
 element to use as the container for the middle three sections (nav, section, and 
aside) in the web page document. Follow these steps:

1. Open the original positiontest.html file in your favorite text editor, 
program editor, or IDE package.

FIGURE 2-7:  
Using absolute 
positioning to 

place sections in 
the web page.
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2. Modify the styles defined so they look like this:

<style>

 

header {

    background-color: red;

    margin: 0px;

    padding: 10px;

    height: 25px;

    width: 100%

}

 

nav {

    background-color: blue;

    margin: 0px;

    padding: 10px;

    height: 125px;

    width: 20%;

    float: left;

}

 

section {

    background-color: green;

    margin: 0px;

    padding: 10px;

    height: 125px;

    width: 55%;

    float: left;

}

 

aside {

    background-color: yellow;

    margin: 0px;

    padding: 10px;

    height: 125px;

    width: 20%;

    float: right;

}

 

footer {

    clear: both;

    background-color: orange;

    margin: 0px;

    padding: 10px;
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    height: 25px;

    width: 100%;

}

</style>

3. Modify the HTML code to add a div parent element around the nav, 
section, and aside elements.

That code should look like this:

<body>

<header><p>This is the header</p></header>

<div id="container">

<nav><p>Navigation</p></nav>

<section><p>Section</p></section>

<aside><p>Aside</p></aside>

</div>

<footer><p>This is the footer</p></footer>

</body>

4. Save the updated positiontest.html file as positiontest3.html.

5. Start your web server, open your browser, and go to the following URL:

http://localhost:8080/positiontest2.html

6. Close the browser and stop the web server.

When you view the resulting web page, it should look similar to Figure 2-8.

FIGURE 2-8:  
Using float  

positioning to 
place sections in 

the web page.
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The float property in the nav, section, and aside elements causes them to float 
within the parent div element. I gave the parent element an id attribute value of 
container to help me remember its purpose. It’s not necessary for it to have an 
id attribute defined because it isn’t styled by itself.

Each of the inner sections appears side by side, as long as there’s enough space 
for them in the browser window. By using a percentage value for the width, this 
creates what’s called a liquid layout. With a liquid layout, if you resize the browser 
window, the individual section elements resize as well. If you resize the browser 
window too small, the browser automatically repositions the elements so that 
they all appear in the window.
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HTML5 Forms

Quite possibly one of the most common ways that PHP programming helps 
is by processing data entered into an HTML5 form. There are plenty of 
applications that require data entry — from keeping track of your bowl-

ing team to filling out online job applications. HTML forms have been around 
for a long time, and with HTML5 it’s sure to stick around for years to come. 
This  chapter shows you how to create forms for your web applications using the 
HTML5 form features.

Understanding HTML5 Forms
A dynamic web application requires some type of interaction with the site visitors 
who use it. That interaction is usually done with a form. Forms allow you to ask 
your site visitor for information using many of the same input interfaces that are 
commonly found in Windows and macOS systems, such as text boxes, drop-down 
lists, and radio buttons.

Before you can create a form for your web application, you need to do some house-
keeping for HTML5. You need to define the form and how the browser should han-
dle the data the site visitor enters into it. This section explains just how to do that.

Chapter 3

IN THIS CHAPTER

 » Creating a data form

 » Examining the form fields

 » Looking at additions to HTML5

 » Validating forms
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Defining a form
It’s probably not too surprising that the HTML element you use to create a form is 
the form element. The form element has a simple enough format:

<form attributes>

   form elements

</form>

The <form> tag defines the start of the form area, which contains all the elements 
that create the form fields. The </form> tag defines the end of the form area.

The form element has lots of attributes that define just how the browser handles 
the data in the form. Table 3-1 shows all the attributes available.

Often, when you create a form, you don’t need to worry about setting all the attri-
butes shown in Table 3-1; you can use the standard default values. Here are the 
attributes you’ll probably work with the most:

 » action: You’ll need to define the URL of the web page that will accept and 
process the form data. Usually, this is a page that contains server-side 
programming, such as PHP code.

 » enctype: If your form contains binary data (such as an upload file), you’ll need 
to set the encoding type so the server knows there’s binary data involved with 
the form data.

TABLE 3-1	 The Form Element Attributes
Attribute Description

accept-charset Specifies the character used in the form if it’s different from the web page

action Defines the URL where the browser should send the form data

autocomplete Specifies whether the browser is allowed to use the autocomplete feature

enctype Specifies the encoding the browser uses to submit the form data

method Specifies the transfer method the browser should use to send the data

name Defines a name assigned to the form

novalidate Specifies that the browser shouldn’t validate the data

target Specifies the target window for the action URL
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 » method: You’ll need to define how the browser sends the data to the server, 
using either the HTTP GET method or the HTTP PUT method.

• GET: The HTTP GET method sends the form data as part of the URL to the 
server. It embeds the form field names and data values together in the 
URL. Often, if you fill out a form on the Internet and click the Submit 
button, you’ll see a URL that looks something like this:

http://myhost.com/index.php?content=store&id=100

This means the form used the GET method to send two form fields back to 
the server. Because the server needs to identify each value, the GET 
method associates the form field name with each value:

content=store

id=100

These values indicate that a form field named content is set to a value of 
store and a form field name id is set to a value of 100.

This method is a great way to quickly send small pieces of form data to the 
server, but it isn’t recommended for larger forms. For forms that send lots 
of data, you’re better off using the HTML PUT method.

• PUT: The PUT method sends the data behind the scenes in the HTTP 
request packets instead of using the URL. The data isn’t seen in the 
address bar of the browser; instead, it’s processed by the client browser 
and server as part of the HTTP communication behind the scenes.

Just because the data isn’t easily seen doesn’t mean it’s secure. The data 
sent by the PUT method is still sent in plain text in the HTTP request 
message. Any person with a network sniffer can still read that data. The 
only secure method of sending data is with an encrypted HTTPS session.

After you define the form and how it will send the form data, you’re ready to start 
adding some form fields.

Working with form fields
The original version of HTML didn’t specify all that many form field elements 
for us to use. The list of form field elements that were available are shown in 
Table 3-2.
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HTML5 adds a couple more form field elements to the list:

 » datalist: Provides a list of predefined options

 » keygen: Creates a public/private key pair for authentication

 » output: Creates an area to display results from a process

The following sections walk you through how to use each of these elements in 
your web forms.

Using Input Fields
The input element is the most versatile of the form field elements. It provides for 
a few different types of interfaces to input data. You define the type of input field 
element to use by adding the type attribute to the tag:

<input type="type" attributes>

The HTML standard defines a handful of different input field types. If you’ve ever 
interacted with a Windows or macOS workstation (and who hasn’t these days?), 
you’re familiar with all these input types. The following sections explain how to 
use each one.

Text boxes
The text box is the workhorse of the form. How many times have you filled out an 
online form that asked for your name, age, address, and so on? All these single-
line form fields use the text box input type.

TABLE 3-2	 HTML Basic Form Field Elements
Field Description

button A clickable area on the web page that triggers an action

input Provides a single interface for one data value

select A list of multiple objects in a drop-down list

submit Signals to the browser to send the form data to the action URL

textarea A larger multiline box for entering larger amounts of text
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