
H
TM

L5
 F

or
m

s

CHAPTER 3 HTML5 Forms 139

You create a text box input field by setting the type attribute value to text:

<input type="text" name="age" size=3>

The name attribute defines a unique identifier that allows you to retrieve the value
entered into the field. It’s important that you include that attribute. The size
attribute allows you to set how large the form field appears on the web page. The
default value is 20, which is a bit much for entering an age, so I’ve changed it to 3.

You can define a default value that appears in the form field using the value
attribute. This feature is useful if you’re trying to get your site visitor to update
information that’s already in your database. Just display the existing data as the
default values for each form field.

The disabled attribute prevents you from entering data into the text field. It may
sound weird to display a text field that you can’t enter data into, but it has a pur-
pose when you learn how to dynamically change the input fields using JavaScript
later on in Book 3.

You can associate a label with a text box by using the label element. The input ele-
ment should be enclosed in the label opening and closing tags:

<label>

 Last Name

 <input type="text" name="lastname">

</label>

With this format, you can use CSS to style and position both the label and the text
box field at the same time.

Another feature is the ability to group input fields together into a fieldset. A fieldset
creates a border area around the enclosed form fields to help separate them out in
the web page. The format to use a fieldset is:

<fieldset>

 <legend>Enter your name</legend>

 <label>

 Last Name

 <input type="text" name="lastname">

 </label>

 <label>

 First Name

 <input type="text" name="firstname">

 </label>

</fieldset>

140 BOOK 2 HTML5 and CSS3

The legend element allows you to define text that appears in the fieldset border
area. Figure 3-1 shows how this form looks.

The nice thing about the fieldset is that you can assign it an id attribute and then
apply specific styles to the entire group in CSS3.

Password entry
Many web applications require that site visitors enter sensitive information in the
form, such as Social Security numbers (SSNs). The input element provides an easy
way to hide that information from prying eyes trying to watch as visitors enter
their data.

The password input field type instructs the browser to mask the characters as the
site visitor enters them into the text box. Here’s the format to create a password
field:

<input type="password" name="ssn">

As your site visitor types data into the password form field, the browser masks the
characters by displaying a neutral, nondescript character. Just how the characters
are masked depends on the browser. Most browsers use bullet circles in the field.

FIGURE 3-1:
Using a fieldset to
group form fields.

H
TM

L5
 F

or
m

s

CHAPTER 3 HTML5 Forms 141

Check boxes
Check boxes provide a simple yes-or-no response form field. The checkbox input
type creates a simple square box that the site visitor can click. The check box field
toggles with each click — from showing a check mark in the box to not showing
a check mark in the box.

To define a checkbox input type, use the following format:

<input type="checkbox" name="fishing">

The name attribute defines the name that’s passed along to the action URL when
the site visitor submits the form. The value sent is a Boolean true/false value —
true if the check box is marked, and false if the check box is not marked.

Because the check box field is just a box, you’ll most likely want to associate a
label with the check box field so your site visitors know what they’re selecting.
Often, check boxes are used in groups, so you can use the fieldset element:

<fieldset>

 <legend>Please select which sports you like</legend>

 <label>

 Baseball

 <input type="checkbox" name="baseball">

 </label>

 <label>

 Basketball

 <input type="checkbox" name="basketball">

 </label>

 <label>

 Football

 <input type="checkbox" name="football">

 </label>

 <label>

 Hockey

 <input type="checkbox" name="hockey">

 </label>

</fieldset>

Figure 3-2 shows how this form looks in the browser window.

142 BOOK 2 HTML5 and CSS3

You can also set a default state for the check box, but not by using the value
attribute. Instead, you have to use the checked attribute:

<input type="checkbox" name="football" checked>

The checked attribute doesn’t have a value associated with it. If it appears in the
input element, the check box appears with a check mark in it.

Radio buttons
A similar interface to check boxes are radio buttons. Radio buttons allow you to
select only one out of a group of options. You create radio buttons by using the
radio input type:

<input type="radio" name="sports">

To group options together, you have to assign them all the same name attribute.
Then the browser will allow your site visitors to select only one option from the
group. That code would look like this:

<fieldset>

 <legend>Please select your favorite sport</legend>

 <label>

 Baseball

 <input type="radio" name="sport">

 </label>

FIGURE 3-2:
Using check

boxes in a
fieldset.

H
TM

L5
 F

or
m

s

CHAPTER 3 HTML5 Forms 143

 <label>

 Basketball

 <input type="radio" name="sport">

 </label>

 <label>

 Football

 <input type="radio" name="sport" >

 </label>

 <label>

 Hockey

 <input type="radio" name="sport">

 </label>

</fieldset>

Figure 3-3 shows how the radio buttons appear on the web page.

As your site visitor selects each option, the previously selected option is reset.
Only one value is sent back to the server from the form field.

If you’d like to set a default value for the radio button group, add the checked
attribute to that radio button element.

Hidden fields
Your application may need to pass data behind the scenes as part of the applica-
tion control. Perhaps it’s a product ID value related to an item the site visitor is
purchasing or an employee ID number in a human resources application. Not all
data that the form submits needs to be seen by the site visitor.

FIGURE 3-3:
Using radio

buttons to make
a selection from a

group.

144 BOOK 2 HTML5 and CSS3

To accommodate that, HTML uses the hidden input type:

<input type="hidden" name="productid" value="121">

The hidden form field doesn’t appear in the form itself, so you have to use the
value attribute to assign a value to the form field that gets passed to the server.
When the site visitor clicks the Submit button to submit the form data, any hidden
form fields that are defined are sent along with the normal form field data.

File upload
If your application requires that your site visitors upload files, you’ll want to
explore the file input type. The file input type produces an input field with two
parts:

»» A text box to display the filename

»» A Browse button to launch a file manager

In some browsers, you can manually type the filename in the text box, but many
of the popular browsers prevent that. The Browse button appears next to the text
box, allowing site visitors to search for the file to upload. The interface that’s used
for searching depends on the OS the browser is running on. On Windows worksta-
tions, clicking the Browse button launches the File Explorer tool. On macOS work-
stations, clicking the Browse button launches the Finder tool. Figure 3-4 shows
how the field appears on the web page.

The format of the file input field is:

<input type="file" name="upload">

That’s simple enough! However, you need to take care of one more thing when
using the file input field. By default, the form sets the enctype attribute for

FIGURE 3-4:
The file input

type interface
as shown in the
Microsoft Edge

browser.

H
TM

L5
 F

or
m

s

CHAPTER 3 HTML5 Forms 145

encoding characters before they’re uploaded. Most likely, your upload files will
contain binary data, and encoding that data will corrupt it.

To solve that problem you need to set the enctype attribute in the <form> opening
tag to use the multipart/form-data value:

<form method="POST" action="myhost.com/index.php" enctype="multipart/form-data">

This ensures that the binary data contained in the uploaded file is uploaded in
binary format, but the data contained in the other form fields are properly encoded
for upload.

Buttons
Button, button, who’s got the button? That’s just a silly child’s game, but but-
tons are a crucial part of your web forms. Buttons allow your site visitor to trigger
actions on the web page, from launching JavaScript programs to uploading the
form data to the server.

There are three types of button input types available to use: button, reset, and
submit.

Button
The button field type creates a generic button to trigger an event. When a site vis-
itor clicks the button, nothing happens by default. The trick is to define an action
using the onclick attribute:

<input type="button" name="launch" value="Click Me" onclick="myprogram()">

The value attribute defines what text appears in the button. The browser will
automatically size the button to fit the text you specify. The onclick attribute
defines a JavaScript function that the browser runs when you click the button.

Reset
The reset field type resets any values in the form data fields back to their original
values — either to empty if no default value is defined or to the default value if
it’s defined:

<input type="reset" name="reset" value="Reset fields">

146 BOOK 2 HTML5 and CSS3

Submit
The submit input field type is a crucial part of most forms. It signals to the browser
that it’s time to upload the form field data values to the server:

<input type="submit">

By default, the button appears with Submit as the button label. You can change the
button text using the value attribute. It’s customary to place the Submit button
at the bottom of a form, but that isn’t required. You can place the Submit button
anywhere between the opening <form> tag and the closing </form> tag.

Adding a Text Area
Text boxes are extremely versatile, but there’s a limit to what they can do. If you
need to enter large amounts of text, the text box scrolls to allow you to enter the
text, but you lose sight of the text you previously typed.

The textarea element provides a larger interface for entering text. To create a
text area, you use the following opening and closing tags:

<textarea name="story"></textarea>

That, by itself, though, won’t give you what you’re looking for. There are a few
attributes that you’ll want to use to define the text area. Table 3-3 shows the
attributes you can use.

TABLE 3-3	 The textarea Attributes
Attribute Description

cols Specifies the width of the text area in the web page

disabled Grays out the text area so nothing can be typed

name Specifies the form field name associated with the field

readonly Locks the text area so nothing can be typed, but default text can be displayed

rows Specifies the height of the text area in the web page

H
TM

L5
 F

or
m

s

CHAPTER 3 HTML5 Forms 147

So, to create a text area that’s 20 characters wide by 30 characters high, you’d use
the following:

<textarea name="story" cols=20 rows=30></textarea>

Your site visitors can then type their text in the text area. If they type more than
30 rows of text, the browser will add a scrollbar to the right side of the text area
and allow them to continue typing.

You’ll notice that in my text area examples, there’s nothing between the open-
ing and closing textarea tags. That produces an empty text area. Any text that
you place between the opening and closing tags appears as the default text in the
text area.

Using Drop-Down Lists
Often, you want to limit the choices your site visitors have for a specific data field.
To do that, you use a drop-down list. The drop-down list appears in the form as
a single line, similar to a text box, but with a down arrow. If you click the down
arrow, a box drops down with all the options available in it. You can then select
one or more options from the drop-down list.

In the HTML5 world, this feature is called a select element. The select element
consists of two parts:

»» The select opening and closing tags to define the select element

»» One or more option elements that define the allowed options

Here’s an example of a simple select element (see Figure 3-5):

<select name="sports">

<option value="baseball">Baseball</option>

<option value="basketball">Basketball</option>

<option value="football">Football</option>

<option value="hockey">Hockey</option>

</select>

148 BOOK 2 HTML5 and CSS3

With this format, the browser displays a single text box along with a down arrow
indicating that there’s a drop-down list to select from. When you click the arrow,
you see the list.

If you prefer to have more of the options appear on the web page than just one, set
the size attribute in the <select> tag:

<select name="sports" size="4">

This creates a list of options that you can scroll through, as shown in Figure 3-6.

FIGURE 3-5:
Using the

select element.

FIGURE 3-6:
Displaying

multiple options
in the select

element.

H
TM

L5
 F

or
m

s

CHAPTER 3 HTML5 Forms 149

Each option element defines one item in the select list. The browser displays the
text between the opening <option> and closing </option> tags, but it sends the
value attribute of the item your site visitor selects to the server. This can come
in handy if you want to use abbreviations or codes in your data, but you want to
display the full text to the site visitors.

By default, the select element only allows the site visitor to select one value. You
can change that behavior by setting the multiple attribute in the <select> open-
ing tag.

Enhancing HTML5 Forms
The original HTML standards were pretty bare-bones with the form field options.
These days web developers gather all types of information from forms. To help
with that, the HTML5 standard defines some fancier form types that you can use.
This section walks you through what those are.

Data lists
The datalist element is new to HTML5. It allows you to create an option list
for drop-down lists that use the autocomplete feature, made popular by Google
searching. As you start typing a value in the text box, the list that appears in the
drop-down box narrows to only the values that match what you’ve typed.

The data list feature requires three parts:

»» An <input> tag that defines the data list

»» A datalist element that defines the list

»» One or more <option> tags that define the list values

A complete data list looks like this:

<input list="sports">

<datalist id="sports">

 <option value="Baseball">

 <option value="Basketball">

 <option value="Football">

 <option value="Hockey">

</datalist>

150 BOOK 2 HTML5 and CSS3

The list attribute in the <input> tag refers to the data list id attribute value
for the data list to use. This allows you to define multiple data lists in your form.
Figure 3-7 shows how the data list looks in action.

In this example, as I typed the characters, the matching data list values appeared
in the drop-down box, limiting my choices. Notice that the match is case insensi-
tive and that the match is made anywhere in the text string of the option values.

Additional input fields
One of the more exciting features in the HTML5 standard form additions are the
additions to the <input> tag. HTML5 defines 13 additional input element types:

»» color: Produces a color palette for the site visitor to select a color. Returns
the RGB color value associated with the selected color.

»» date: Produces a graphical month calendar to select a date. Returns the
selected year, month, and day values.

»» datetime: Produces a graphical month calendar to select a date and a text
box to select the time. Returns the selected year, month, date, hour, minute,
second, and fraction-of-a-second values, along with the time zone.

»» datetime-local: Produces the same form field as the datetime input type,
but doesn’t return a time zone.

»» email: For inputting a single email address or a comma-separated list of email
addresses.

FIGURE 3-7:
Using a data list

in the web page.

H
TM

L5
 F

or
m

s

CHAPTER 3 HTML5 Forms 151

»» month: Produces a graphical month calendar. Returns the year and month selected.

»» number: Produces a spin box for increasing or decreasing a numeric value in a
text box. Returns the numeric value selected.

»» range: Produces a slider to select a value from a range. You define the range
using the min and max attributes in the tag. Returns the numeric value selected.

»» search: Produces a text box that some browsers style like a search box (such
as with a magnifying glass icon). Returns the value entered into the text box.

»» tel: Produces a standard text box for entering a telephone number. Some
browsers may validate the format of the text entered to ensure it matches a
telephone number format. Returns the value entered into the text box.

»» time: Produces a time selector that shows two numeric values, along with a
spin box for increasing or decreasing the values. The numeric values indicate
1 through 12 for the hour and 0 through 59 for the minutes. Returns the
values selected in a time format.

»» url: Produces a text box for entering a text URL. Some browsers may validate
the URL format entered. Returns the text entered into the text box.

»» week: Produces a graphical calendar to select a week number for a specified
year. Returns the year and the week number selected.

These produce some pretty amazing input fields in your web pages! The only
downside is that different browsers may use different methods to produce these
form fields. Let’s walk through an example to create a test program so you can see
how your browsers handle the new input fields:

1.	 Open your favorite text editor, program editor, or integrated develop-
ment environment (IDE) package.

2.	 Enter the following code:

<!DOCTYPE html>

<html>

<head>

<title>HTML5 Input Types Test</title>

</head>

<body>

<h1>Testing the HTML5 Input Types</h1>

<fieldset>

<legend>HTML5 Input Fields</legend>

<label>

Color Selector

<input type="color" name="colortest">

</label>

152 BOOK 2 HTML5 and CSS3

<label>

Date Selector

<input type="date" name="datetest">

</label>

<label>

DateTime Selector

<input type="datetime" name="datetimetest">

</label>

<label>

DateTime-Local Selector

<input type="datetime-local" name="datetimelocaltest">

</label>

<label>

Email Selector

<input type="email" name="emailtest">

</label>

<label>

Month Selector

<input type="month" name="monthtest">

</label>

<label>

Number Selector

<input type="number" name="numbertest">

</label>

<label>

Range Selector

<input type="range" min=0 max=100 name="rangetest">

</label>

<label>

Search Selector

<input type="search" name="searchtest">

</label>

<label>

Telephone Selector

<input type="tel" name="teltest">

</label>

<label>

Time Selector

<input type="time" name="timetest">

</label>

<label>

URL Selector

<input type="url" name="urltest">

</label>

H
TM

L5
 F

or
m

s

CHAPTER 3 HTML5 Forms 153

<label>

Week Selector

<input type="week" name="weektest">

</label>

</body>

</html>

3.	 Save the file as inputtypestest.html in the DocumentRoot folder for your
web server (such as c:\xampp\htdocs for XAMPP in Windows, or /
Application/XAMPP/htdocs for XAMPP in macOS).

4.	 Start your web server.

5.	 Open a browser and enter the following URL:

http://localhost:8080/inputtypestest.html

6.	 Close the browser window and shut down the web server.

The inputtypestest.html file is a great way to see how the new HTML5 input
types look in different browsers. Figure 3-8 shows how they look in the Google
Chrome browser.

If you have a mobile device handy, try testing the inputtypestest.html web page
on your mobile device. Mobile devices use virtual keyboards that appear on the
screen when you click in an input form field. Most mobile devices will customize
the keyboard depending on which type of input form field you click in. For exam-
ple, in the tel input type, the mobile device may only display a numeric keypad

FIGURE 3-8:
Viewing the

input
typestest.html

output in the
Google Chrome

browser.

154 BOOK 2 HTML5 and CSS3

for entering the phone number; for the email input type, the mobile device may
display a keyboard with a .com button.

Using HTML5 Data Validation
Accepting data from unknown website visitors is a dangerous thing. However,
dynamic web applications must have user interaction to work. The conundrum is
how to do both.

One method is to use data validation, which is the process of verifying that the data
your site visitors enter into the form fields is correct. There are two ways to tackle
that process:

»» On the server, with server-side programming code

»» In the client browser, using HTML, CSS, and JavaScript

In Book 4, Chapter 4, I cover all the bases on using server-side programming
to validate form data. However, waiting until the browser has uploaded the data to
the server to validate it can be somewhat cumbersome. By that time, the site visitor
has already entered all the form data. Returning a web page making the site visitor
re-enter all that data just because of one typo is not a good way to retain customers.

This is where client-side data validation comes in handy. The more data you can
validate in the browser as the site visitor enters it, the better the chance you have
of receiving valid data in the first place.

Holding your place
HTML5 helps that process with a few additional features. One such feature is the
placeholder attribute for the input element. The placeholder attribute appears
as gray text inside the form field and can provide a suggested format for the data
to enter:

<label>

Enter your daytime phone number:

<input type="tel" name="num" placeholder="(nnn)nnn-nnnn">

</label>

The browser displays the placeholder value inside the input form field, but as gray
text, as shown in Figure 3-9.

H
TM

L5
 F

or
m

s

CHAPTER 3 HTML5 Forms 155

As you start typing text in the input field, the placeholder text disappears.

Making certain data required
Another data validation attribute added by HTML5 is the required attribute:

<input type="text" name="lastname" required="required">

The required attribute marks the form field so that the browser won’t upload the
form if that field is empty. Some browsers will display an error message indicating
which required form field(s) are empty.

Validating data types
Not only do the additional HTML5 input types produce different types of input
fields, but you can also use them to validate data. Browsers that support the new
HTML5 data types will mark input form fields that contain data not in the proper
format with the invalid state.

CSS provides pseudo-class rules to style elements based on their state (see Book 2,
Chapter 2). You use the invalid and valid pseudo-class states to style input fields
with invalid data differently from input fields with valid data. This helps make the
fields with invalid data stand out in the form.

Here’s a quick example you can try to test this feature:

1.	 Open your favorite text editor, program editor, or IDE package.

FIGURE 3-9:
Using the

placeholder
HTML5 attribute.

156 BOOK 2 HTML5 and CSS3

2.	 Type the following code:

<!DOCTYPE html>

<html>

<head>

<title>Testing for Invalid Data</title>

</head>

<style>

input:invalid {

 background-color: red;

}

input:valid {

 background-color: lightgreen;

}

</style>

<body>

<h1>Testing for invalid data</h1>

<fieldset>

<legend>You must be over 18 to participate</legend>

<label>

Age:

<input type="number" name="age" min="18">

</label>

</fieldset>

</body>

</html>

3.	 Save the file as invaliddatatest.html in the DocumentRoot folder for
your web server (c:\xampp\htdocs for XAMPP on Windows or /
Applications/XAMPP/htdocs for XAMPP on macOS).

4.	 Start the Apache web server from XAMPP.

5.	 Open a browser and enter the following URL:

http://localhost:8080/invaliddatatest.html

6.	 Close the browser, and stop the XAMPP web server.

When the invaliddatatest.html form first appears, the age data field will be empty
and colored green. If you use the spinner icons on the right side of the text box,
the numbers will start at 18, and the text box will stay green. However, if you try
to manually enter an age less than 18, the text box immediately turns red.

CHAPTER 4 Advanced CSS3 157

Advanced CSS3

The previous two chapters show you how to use the combination of HTML5
and CSS to create content and style it for your web pages. CSS3 provides
some more advanced features, allowing you to do even more styling for your

web pages. This chapter walks you through some of the more exciting features
from CSS3 that you can use to liven up your site.

Rounding Your Corners
In Book 2, Chapter 3, I explain how to build online forms using HTML5. However,
by default, HTML forms are somewhat boring, even after adding some CSS styling.

The default styling used by browsers to display text boxes, buttons, and text areas
in forms produces nothing but square boxes, which gets pretty boring. The original
CSS standard didn’t do anything to solve the problem, other than possibly adding
some color to the square boxes. Cubism may be good for some styles of paintings,
but that layout doesn’t work in forms and can bore your website visitors.

One of the features that had been hotly sought after in the browser world has been
the ability to use rounded corners for form elements. The simple act of rounding

Chapter 4

IN THIS CHAPTER

»» Rounding corners

»» Working with border images

»» Exploring new colors

»» Using gradients

»» Lurking in the shadows

»» Working with fonts

»» Answering media queries

158 BOOK 2 HTML5 and CSS3

the square boxes just a bit can liven up the form. Many individual browsers
added the rounded corners feature on their own, separate from the CSS standard.
Unfortunately, as you may guess, different browsers used different methods for
implementing rounded corners. Trying to write a style that would work across all
browsers became both difficult and confusing. But because using rounded corners
became so popular, that feature was finally added to CSS3 as a standard.

The new border-radius style property allows you to round off the sharp edges
from elements on the web page. It does that by allowing you to define the radius
of an imaginary circle used to create the rounded corners. You can just shave a
little off the edge by using a small radius value, or you can create a full ellipse by
completely rounding all four corners with a large radius value. Figure 4-1 shows
an example of applying the border-radius property to a few form elements.

Notice that the input text boxes, the text area, and even the Submit button are
rounded instead of the standard squares. That makes quite a difference in the
appearance of the web form.

What can get confusing with the border-radius property, though, is that there
are four different formats for using it — with one, two, three, or four parameters.
The following single parameter sets the radius of all four corners to 10 pixels:

border-radius: 10px;

The following two parameters set the radius of the top-left and bottom-right
corners to 10 pixels, but the top-right and bottom-left corners to 5 pixels:

FIGURE 4-1:
Using the

border-radius
property to

create rounded
corners.

	Title Page

	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part
1 Getting Started with Web Programming
	Chapter 1 Examining the Pieces of Web Programming
	Creating a Simple Web Page
	Kicking things off with the World Wide Web
	Making sense of markup languages
	Retrieving HTML documents
	Styling

	Creating a Dynamic Web Page
	Client-side programming
	Server-side programming
	Combining client-side and server-side programming

	Storing Content

	Chapter 2 Using a Web Server
	Recognizing What’s Required
	The web server
	The PHP server
	The database server

	Considering Your Server Options
	Using a web-hosting company
	Building your own server environment
	Using premade servers

	Tweaking the Servers
	Customizing the Apache Server
	Customizing the MySQL server
	Customizing the PHP server

	Chapter 3 Building a Development Environment
	Knowing Which Tools to Avoid
	Graphical desktop tools
	Web-hosting sites
	Word processors

	Working with the Right Tools
	Text editors
	Program editors
	Integrated development environments
	Browser debuggers

	Part
2 HTML5 and CSS3
	Chapter 1 The Basics of HTML5
	Diving into Document Structure
	Elements, tags, and attributes
	Document type
	Page definition
	Page sections

	Looking at the Basic HTML5 Elements
	Headings
	Text groupings
	Breaks

	Marking Your Text
	Formatting text
	Using hypertext

	Working with Characters
	Character sets
	Special characters

	Making a List (And Checking It Twice)
	Unordered lists
	Ordered lists
	Description lists

	Building Tables
	Defining a table
	Defining the table’s rows and columns
	Defining the table headings

	Chapter 2 The Basics of CSS3
	Understanding Styles
	Defining the rules of CSS3
	Applying style rules
	Cascading style rules

	Styling Text
	Setting the font
	Playing with color

	Working with the Box Model
	Styling Tables
	Table borders
	Table data

	Positioning Elements
	Putting elements in a specific place
	Floating elements

	Chapter 3 HTML5 Forms
	Understanding HTML5 Forms
	Defining a form
	Working with form fields

	Using Input Fields
	Text boxes
	Password entry
	Check boxes
	Radio buttons
	Hidden fields
	File upload
	Buttons

	Adding a Text Area
	Using Drop-Down Lists
	Enhancing HTML5 Forms
	Data lists
	Additional input fields

	Using HTML5 Data Validation
	Holding your place
	Making certain data required
	Validating data types

	Chapter 4 Advanced CSS3
	Rounding Your Corners
	Using Border Images
	Looking at the CSS3 Colors
	Playing with Color Gradients
	Linear gradients
	Radial gradients

	Adding Shadows
	Text shadows
	Box shadows

	Creating Fonts
	Focusing on font files
	Working with web fonts

	Handling Media Queries
	Using the @media command
	Dealing with CSS3 media queries
	Applying multiple style sheets

	Chapter 5 HTML5 and Multimedia
	Working with Images
	Placing images
	Styling images
	Linking images
	Working with image maps
	Using HTML5 image additions

	Playing Audio
	Embedded audio
	Digital audio formats
	Audio the HTML5 way

	Watching Videos
	Paying attention to video quality
	Looking at digital video formats
	Putting videos in your web page

	Getting Help from Streamers

	Part
3 JavaScript
	Chapter 1 Introducing JavaScript
	Knowing Why You Should Use JavaScript
	Changing web page content
	Changing web page styles

	Seeing Where to Put Your JavaScript Code
	Embedding JavaScript
	Using external JavaScript files

	The Basics of JavaScript
	Working with data
	Data types
	Arrays of data
	Operators

	Controlling Program Flow
	Conditional statements
	Loops

	Working with Functions
	Creating a function
	Using a function

	Chapter 2 Advanced JavaScript Coding
	Understanding the Document Object Model
	The Document Object Model tree
	JavaScript and the Document Object Model

	Finding Your Elements
	Getting to the point
	Walking the tree

	Working with Document Object Model Form Data
	Text boxes
	Text areas
	Check boxes
	Radio buttons

	Chapter 3 Using jQuery
	Loading the jQuery Library
	Option 1: Downloading the library file to your server
	Option 2: Using a content delivery network

	Using jQuery Functions
	Finding Elements
	Replacing Data
	Working with text
	Working with HTML
	Working with attributes
	Working with form values

	Changing Styles
	Playing with properties
	Using CSS objects
	Using CSS classes

	Changing the Document Object Model
	Adding a node
	Removing a node

	Playing with Animation

	Chapter 4 Reacting to Events with JavaScript and jQuery
	Understanding Events
	Event-driven programming
	Watching the mouse
	Listening for keystrokes
	Paying attention to the page itself

	Focusing on JavaScript and Events
	Saying hello and goodbye
	Listening for mouse events
	Listening for keystrokes
	Event listeners

	Looking at jQuery and Events
	jQuery event functions
	The jQuery event handler

	Chapter 5 Troubleshooting JavaScript Programs
	Identifying Errors
	Working with Browser Developer Tools
	The DOM Explorer
	The Console
	The Debugger

	Working Around Errors

	Part
4 PHP
	Chapter 1 Understanding PHP Basics
	Seeing the Benefits of PHP
	A centralized programming language
	Centralized data management

	Understanding How to Use PHP
	Embedding PHP code
	Identifying PHP pages
	Displaying output
	Handling new-line characters

	Working with PHP Variables
	Declaring variables
	Seeing which data types PHP supports
	Grouping data values with array variables

	Using PHP Operators
	Arithmetic operators
	Arithmetic shortcuts
	Boolean operators
	String operators

	Including Files
	The include() function
	The require() function

	Chapter 2 PHP Flow Control
	Using Logic Control
	The if statement
	The else statement
	The elseif statement
	The switch statement

	Looping
	The while family
	The for statement
	The foreach statement

	Building Your Own Functions
	Working with Event-Driven PHP
	Working with links
	Processing form data

	Chapter 3 PHP Libraries
	How PHP Uses Libraries
	Exploring PHP extensions
	Examining the PHP extensions
	Including extensions
	Adding additional extensions

	Text Functions
	Altering string values
	Splitting strings
	Testing string values
	Searching strings

	Math Functions
	Number theory
	Calculating logs and exponents
	Working the angles
	Hyperbolic functions
	Tracking statistics

	Date and Time Functions
	Generating dates
	Using timestamps
	Calculating dates

	Image-Handling Functions

	Chapter 4 Considering PHP Security
	Exploring PHP Vulnerabilities
	Cross-site scripting
	Data spoofing
	Invalid data
	Unauthorized file access

	PHP Vulnerability Solutions
	Sanitizing data
	Validating data

	Chapter 5 Object-Oriented PHP Programming
	Understanding the Basics of Object-Oriented Programming
	Defining a class
	Creating an object instance

	Using Magic Class Methods
	Defining mutator magic methods
	Defining accessor magic methods
	The constructor
	The destructor
	Copying objects
	Displaying objects

	Loading Classes
	Extending Classes

	Chapter 6 Sessions and Carts
	Storing Persistent Data
	The purpose of HTTP cookies
	Types of cookies
	The anatomy of a cookie
	Cookie rules

	PHP and Cookies
	Setting cookies
	Reading cookies
	Modifying and deleting cookies

	PHP and Sessions
	Starting a session
	Storing and retrieving session data
	Removing session data

	Shopping Carts
	Creating a cart
	Placing items in the cart
	Retrieving items from a cart
	Removing items from a cart
	Putting it all together

	Part
5 MySQL
	Chapter 1 Introducing MySQL
	Seeing the Purpose of a Database
	How databases work
	Relational databases
	Database data types
	Data constraints
	Structured Query Language

	Presenting MySQL
	MySQL features
	Storage engines
	Data permissions

	Advanced MySQL Features
	Handling transactions
	Making sure your database is ACID compliant
	Examining the views
	Working with stored procedures
	Pulling triggers
	Working with blobs

	Chapter 2 Administering MySQL
	MySQL Administration Tools
	Working from the command line
	Using MySQL Workbench
	Using the phpMyAdmin tool

	Managing User Accounts
	Creating a user account
	Managing user privileges

	Chapter 3 Designing and Building a Database
	Managing Your Data
	The first normal form
	The second normal form
	The third normal form

	Creating Databases
	Using the MySQL command line
	Using MySQL Workbench
	Using phpMyAdmin

	Building Tables
	Working with tables using the command-line interface
	Working with tables using Workbench
	Working with tables in phpMyAdmin

	Chapter 4 Using the Database
	Working with Data
	The MySQL command-line interface
	The MySQL Workbench tool
	The phpMyAdmin tool

	Searching for Data
	The basic SELECT format
	More advanced queries

	Playing It Safe with Data
	Performing data backups
	Restoring your data

	Chapter 5 Communicating with the Database from PHP Scripts
	Database Support in PHP
	Using the mysqli Library
	Connecting to the database
	Closing the connection
	Submitting queries
	Retrieving data
	Being prepared
	Checking for errors
	Miscellaneous functions

	Putting It All Together

	Part
6 Creating Object-Oriented Programs
	Chapter 1 Designing an Object-Oriented Application
	Determining Application Requirements
	Creating the Application Database
	Designing the database
	Creating the database

	Designing the Application Objects
	Designing objects
	Coding the objects in PHP

	Designing the Application Layout
	Designing web page layout
	The AuctionHelper page layout

	Coding the Website Layout
	Creating the web page template
	Creating the support files

	Chapter 2 Implementing an Object-Oriented Application
	Working with Events
	Bidder Object Events
	Listing bidders
	Adding a new bidder
	Searching for a bidder

	Item Object Events
	Listing items
	Adding a new item
	Searching for an item

	Logging Out of a Web Application
	Testing Web Applications

	Chapter 3 Using AJAX
	Getting to Know AJAX
	Communicating Using JavaScript
	Considering XMLHttpRequest class methods
	Focusing on XMLHttpRequest class properties
	Trying out AJAX

	Using the jQuery AJAX Library
	The jQuery $.ajax() function
	The jQuery $.get() function

	Transferring Data in AJAX
	Looking at the XML standard
	Using XML in PHP
	Using XML in JavaScript

	Modifying the AuctionHelper Application

	Chapter 4 Extending WordPress
	Getting Acquainted with WordPress
	What WordPress can do for you
	How to run WordPress
	Parts of a WordPress website

	Installing WordPress
	Downloading the WordPress software
	Creating the database objects
	Configuring WordPress

	Examining the Dashboard
	Using WordPress
	Exploring the World of Plugins
	WordPress APIs
	Working with plugins and widgets

	Creating Your Own Widget
	Coding the widget
	Activating the widget plugin
	Adding the widget

	Part
7 Using PHP Frameworks
	Chapter 1 The MVC Method
	Getting Acquainted with MVC
	Exploring the MVC method
	Digging into the MVC components
	Communicating in MVC

	Comparing MVC to Other Web Models
	The MVP method
	The MVVM method

	Seeing How MVC Fits into N-Tier Theory
	Implementing MVC

	Chapter 2 Selecting a Framework
	Getting to Know PHP Frameworks
	Convention over configuration
	Scaffolding
	Routing
	Helper methods
	Form validation
	Support for mobile devices
	Templates
	Unit testing

	Knowing Why You Should Use a Framework
	Focusing on Popular PHP Frameworks
	CakePHP
	CodeIgniter
	Laravel
	Symfony
	Zend Framework

	Looking At Micro Frameworks
	Lumen
	Slim
	Yii

	Chapter 3 Creating an Application Using Frameworks
	Building the Template
	Initializing the application
	Exploring the files and folders
	Defining the database environment

	Creating an Application Scaffold
	Installing the scaffolding
	Exploring the scaffolding code

	Modifying the Application Scaffold
	Adding a new feature link
	Creating the controller code
	Modifying the model code
	Painting a view

	Index
	EULA

