
A
dv

an
ce

d
CS

S3

CHAPTER 4 Advanced CSS3 159

border-radius: 10px 5px;

The following three parameters set the radius of the top-left corner to 10 pixels,
the top-right and bottom-left corners to 5 pixels, and the bottom-right corner to
3 pixels:

border-radius: 10px 5px 3px;

The following four parameters set the radius of the top-left corner to 10 pixels,
the top-right corner to 5 pixels, the bottom-right corner to 3 pixels, and the
 bottom-left corner to 1 pixel:

border-radius: 10px 5px 3px 1px;

When you’re able to set the radius of each individual corner or pairs of corners, you
can create quite a few different special effects, such as dialog bubbles or ellipses.

You can also set the individual corner radii values independently from one another
with a few additional properties:

 » border-top-left-radius

 » border-top-right-radius

 » border-bottom-left-radius

 » border-bottom-right-radius

Each one sets the corresponding border radius value in the element.

The border-radius properties all use a size value to set the circle radius for the
corner. You can specify the size using any of the standard CSS size unit measure-
ments, such as inches, pixels, or em units.

Using Border Images
The default border line that HTML5 places around objects is pretty dull. How
about adding some more elaborate borders around objects? You can, thanks to
another interesting feature added to CSS3. It provides the ability to use images for
the border around elements instead of just a line. This feature allows you to use
any type of image to create a flourish around your elements.

160 BOOK 2 HTML5 and CSS3

You apply a border image to an element by adding the border-image property:

border-image: url(file) slice repeat

The url() function defines the location of the image file used for the border. The
path can be either an absolute value pointing directly to the image file or a relative
path (relative to the location of the CSS script).

The slice value defines what parts of the border image to use for the border.
This part can get somewhat complicated. By default, the browser slices the bor-
der image into nine sections, as shown in Figure 4-2. The nine border image
 sections are

 » The four corner pieces (top left, top right, bottom right, and bottom left)

 » The four edge pieces (top, right, bottom, and left)

 » The middle section

For the slice value, you specify the size of the image pieces to use for the indi-
vidual border images. You can specify that as either a percentage of the entire
image size, or a pixel value to represent how much of the image edges to use for
the border edges. You have the option to specify the slice as one, two, or four
separate values:

FIGURE 4-2:
Slicing a border

image to retrieve
the pieces.

A
dv

an
ce

d
CS

S3

CHAPTER 4 Advanced CSS3 161

 » One value: Cuts the same size of the image for the four corners and the
four edges

 » Two values: One size for the top and bottom, and another size for the left
and right sides

 » Four values: One size each for the top, right side, bottom, and left side

The repeat parameter defines how the browser should make the image fit the
space required to create the border edges. There are four ways to do that:

 » repeat: Repeats the image to fill the entire edge

 » round: Repeats the image, but if the image doesn’t fit the area as a whole
number of repeats, rescales the image so it fits

 » space: Repeats the image, but if the image doesn’t fit the area as a whole
number of repeats, adds spaces between the images so it fits

 » stretch: Stretches the image to fill the edge

So, for example, to define a border image that uses 10-pixel slices from all the
sides, and stretches them to fit the border area, you’d use the following:

border-image: url("myimage.jpg") 10 stretch;

Note that you don’t use the units for the slice value. If you specify the value as
a percentage of the entire image, add the percent sign, but if it’s in pixels, leave
off the px.

Instead of using one property statement for all the features, if you prefer, you can
define these values in separate properties. There are five separate properties used
to define the border image, and how the browser should use it (see Table 4-1).

TABLE 4-1	 The CSS4 Border Image Properties
Property Description

border-image-outset Specifies the amount the image extends beyond the normal border box area

border-image-repeat Specifies how the image should be extended to fit the entire border area

border-image-slice Specifies what piece of the image to use as the border

border-image-source Specifies the path to the image used for the border

border-image-width Specifies the widths of the border image sides

162 BOOK 2 HTML5 and CSS3

Figure 4-3 shows what the border image looks like around an element. That’s
quite a bit better than the standard border line.

The Mozilla Foundation developers’ website includes a handy border image
generator tool: https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_
Background_and_Borders/Border-image_generator. With this tool, you can
upload an image or use one of their standard images, and the tool will automati-
cally generate the CSS3 code necessary to extract the border image properties.

Looking at the CSS3 Colors
In Book 2, Chapter 2, I show you the three formats that the original CSS standard
defines for setting colors in the web page:

 » Using a color name

 » Using an RGB hexadecimal value

 » Using the rgb() function with decimal values

The CSS3 standard extends the options you have available for defining colors
by adding the hue, saturation, and lightness (HSL) method. The HSL method of
defining colors uses three values:

FIGURE 4-3:
Using a border

image around an
element.

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Background_and_Borders/Border-image_generator
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Background_and_Borders/Border-image_generator

A
dv

an
ce

d
CS

S3

CHAPTER 4 Advanced CSS3 163

 » Hue: The degree of color on the color wheel. The color wheel concept has
been around in the art world since the early 1800s. It places the colors around
a circle with the primary colors — red, yellow, and blue — positioned on the
wheel at 0, 60, and 240 degrees, respectively. The secondary colors — orange,
green, and violet — are placed in between the primary colors, in locations
based on their shades at 30, 120, and 260 degrees, respectively. From there,
the different shades of color combinations are arranged appropriately on the
wheel. To specify an individual color hue, you must know its location on the
color wheel. Fortunately there are plenty of charts online to help out with that.

 » Saturation: The percentage of the color used. The saturation value is a
percentage that specifies the grayness shade of the color, from 0 percent for
no color (all gray) to 100 percent for full color saturation.

 » Lightness: The percentage of lightness added to the color. The lightness value
is a percentage that specifies how dark (0 percent) or light (100 percent) the
color should be. The 50 percent value creates the color at its normal shade.
Larger percentages create darker shades of the color, while smaller
 percentages create lighter shades of the color.

To use the HSL method to specify a color, use the hsl() format. For example, the
following property specifies the red color at position 0 of the color wheel, shown
at 100 percent saturation, with 50 percent lightness:

color: hsl(0, 100%, 50%);

The CSS3 standard also adds the opacity feature to HSL, creating the HSLA color
method. With HSLA, you add a fourth parameter to specify the opaqueness of the
color, from 0 to 1. The following example uses the red color, but at 50 percent
transparency:

color: hsla(0, 100%, 50%, 0.5)

The beauty of using the HSL values comes when you’re choosing a color scheme
for your website. If you want to use a single color for the website scheme, you can
modify the saturation and lightness levels to make different shades of the color. If
you want to create a two-color scheme, you may want to choose hues that are 180
degrees apart — those are considered complementary. For a three-color scheme,
hues that are 120 degrees apart create a triad. In a four-color scheme, select hues
that are 90 degrees apart to create a nice offset. By sticking with the color wheel
rules, just about anyone can create a tasteful color scheme for a website.

164 BOOK 2 HTML5 and CSS3

Playing with Color Gradients
While using individual colors are a great way to liven up the website, even colors
can get somewhat boring when you use them all the time. To help make things
more interesting, the CSS3 standard adds color gradients to the mix. A color gradi-
ent slowly fades from one color into a second color, producing a warm transition
effect. These transition colors are often used for backgrounds, creating an effect
that helps the website visitor follow the content as the color gradient morphs into
a different color.

There are two types of color gradients defined in the CSS3 standard:

 » Linear gradients: Fade using a side-to-side or top-to-bottom direction

 » Radial gradients: Use a center point and fade outward (radiate) from there,
much like a tie-dyed T-shirt.

This section discusses how to use each of these methods in your web pages.

Linear gradients
A linear gradient fades between two colors in a linear manner — that is, from side
to side, or from top to bottom. Use the linear-gradient() function to define the
direction of the fade and the transition colors:

linear-gradient(direction, color1, color2);

The direction parameter defines which way the gradient should go. If you omit
the direction, the browser will create the gradient from top to bottom, a common
effect for backgrounds. If you want to change the direction, specify it by the direc-
tion that the gradient should fade from color1 to color2, like this:

linear-gradient(to right, black, white)

You can use to top, to bottom, or to right to specify the direction of the gradi-
ent. This example starts with the black color on the left side and fades to the white
color on the right side, as shown in Figure 4-4.

To use the linear gradient, just add it anywhere you’d use a color value:

background: linear-gradient(red, orange);

A
dv

an
ce

d
CS

S3

CHAPTER 4 Advanced CSS3 165

Linear gradients can create quite the stunning effect for web page backgrounds. If
you want to get fancy, you can specify more colors in the linear-gradient() list
as intermediate points between the two endpoints:

background: linear-gradient(red, orange, yellow);

This takes the color transition from a red to an orange first and then finally to the
yellow destination.

Radial gradients
The radial-gradient() does the same thing as the linear gradient, but in a
 circular pattern radiating from a central point. If you have fond memories of the
days when tie-dyed T-shirts were popular, you may love the radial gradients!

Here’s the format for the radial-gradient() function:

radial-gradient(shape size, color1, color2, ...)

The keys to creating the radial gradient are the shape parameter, which defines
the shape of the gradient, and the size parameter. By default the radial gradient
is drawn as an ellipse, but you can instead specify a circle. The size determines
where the radial gradient stops. Usually this is a location, such as closest-
corner, closest-side, farthest-corner, or farthest-side.

FIGURE 4-4:
A left-to-right

color gradient.

166 BOOK 2 HTML5 and CSS3

You’ll also want to define two or more colors to create the gradient effect in the
image. The simplest way to define a radial gradient is to just define the colors:

background: radial-gradient(red, orange, yellow);

This creates an elliptical radial gradient, centered in the element, radiating out-
ward toward the farthest corner.

Adding Shadows
Yet another cool feature added in CSS3 is the ability to create shadows of elements
on the web page. Shadows allow you to produce the effect of a light shining down
on the web page. You can place shadows behind both text and box elements.

Text shadows
Placing shadows behind text on a web page can create a startling effect to draw
attention to headings. Figure 4-5 shows how the text shadow effect can make the
heading stand out on the web page.

FIGURE 4-5:
Adding the text

shadow effect
to a heading

element.

A
dv

an
ce

d
CS

S3

CHAPTER 4 Advanced CSS3 167

The CSS3 text-shadow style property allows you to define just how the shadow
should look. Here’s the format of the text-shadow style property:

text-shadow: color offsetx offsety blur;

The color parameter defines the color to use for the shadow. The offsetx and
offsety parameters define the distance of the shadow from the text. You can use
either positive or negative values to represent the offset values. Positive values
move the shadow down and to the right of the text. Negative values move the
shadow up and to the left of the text. The blur parameter defines the amount
of space the shadow uses. The larger the space, the more stretched looking the
shadow appears.

Here’s an example of a CSS3 rule that sets a shadow for all h1 elements:

h1 {

 text-shadow: black, 10px, 5px, 15px;

}

This produces a black shadow to the right and below the text.

You can apply more than one shadow to a text element. Just list the different
shadow definitions on the same text-shadow line, separated by commas:

text-shadow: shadow1, shadow2, ...;

The browser displays the shadows in the order you define them, with each shadow
placed on top of the previous shadows.

Box shadows
The box shadow helps the element stand out with almost a 3-D effect on the web
page. Box shadows work the same way as text shadows, but you apply them to
box elements, such as individual form input fields, text areas, or even entire div
blocks. Figure 4-6 shows an example of applying a simple box shadow to a div
section on the web page.

The format for the box-shadow property is similar to the text-shadow property,
with a couple of added things:

box-shadow: [inset] color offsetx offsety blur [spread];

168 BOOK 2 HTML5 and CSS3

The inset keyword is optional. It determines whether the browser should display
the shadow inside the element. By default, the size of the shadow is the same
as the object; by adding the spread value, you can increase or decrease the size
of the shadow.

Creating Fonts
In Chapter 2 of this minibook, I mention the problem with fonts on a web page. In
the past, browsers were only able to use fonts that were already installed on the
workstation. Finding fonts that are available on all workstations is somewhat of
a challenge.

The CSS3 standard has attempted to remedy this situation by providing a way for
web designers to create their own fonts and deliver them to their site visitors as
part of the web page download. The @font-face rule provides a way to specify a
font file that the client browser must download as part of the style definitions.
When the browser downloads the font file, your web application can use that font
to style text in the web pages. These fonts are known as web fonts.

The following sections describe the different types of web fonts and how to use
them in your web applications.

FIGURE 4-6:
Using a box

shadow on a div
element.

A
dv

an
ce

d
CS

S3

CHAPTER 4 Advanced CSS3 169

Focusing on font files
The key to using web fonts is the ability to define a font in a file that every site
visitor’s browser can download and use. The font files contain detailed information
on how the workstation should display individual characters and symbols.

The problem with font files, though, is that, over the years, lots of different font
file formats have appeared. Table 4-2 shows the popular font file formats you may
run into.

The TrueType and WOFF font file formats are currently the only two supported
by all browsers. It’s best to stick with one of these types of fonts when creating
your web fonts.

Font files can often be found and downloaded from the Internet. However, beware
of licensing restrictions on font files. Most font files are not free, or are free only
for personal use.

Working with web fonts
CSS3 allows you to define a web font file for client browsers to download using
the @font-face rule. You may notice that the @font-face rule doesn’t follow any
of the standard style rule-naming conventions that I discuss in Chapter 2 of this
minibook. There’s a reason for that. The @font-face rule defines a CSS command.
CSS commands are directives to the browser to perform some action while loading
the styles. CSS commands start with the at symbol (@) and should be placed at the
start of the CSS stylesheet area.

TABLE 4-2	 Font File Formats
Font Description

TrueType A font created in the 1980s by Microsoft and Apple. This font type is still
commonly used by both operating systems.

OpenType Created by Microsoft and built to extend TrueType fonts. The most common
font type used.

Embedded OpenType A font format created by Microsoft for use only in the Internet Explorer
web browser.

Scalable Vector
Graphics (SVG)

Primarily used for graphics on mobile devices, but can be used to display text.

Web Open Font
Format (WOFF)

A font created by the W3C standards group, intended for web pages.

170 BOOK 2 HTML5 and CSS3

Here’s the format of the @font-face rule:

@font-face {

 font-family: name;

 src: url(location);

 [descriptor:value];

}

The font-family property defines a unique name for the font in your stylesheet.
The src property defines the location of the font file on your server, either as an
absolute or relative path.

Following those two properties, you can add descriptors that indicate when the font
should be used (such as for bold text or for text in italics).

An example of defining a web font would be:

@font-face {

 font-family: myfont;

 src: url(myfont.woff);

}

This defines a font family named myfont from the myfont.woff font file that the
client workstation should download. Then, to use the new font in your web pages,
just define the font-family name in a style rule:

div {

 font-family: myfont;

}

There are three descriptors that you can define for the web font:

 » font-stretch: Specifies how the font should be stretched to fill a space. The
default is normal, but other values are condensed or expanded.

 » font-style: Specifies how the font should be styled. The values are normal,
italic, or oblique.

 » font-weight: Specifies the boldness of the font. The values are normal, bold,
or numeric values from 100 to 900.

By specifying different font-style and font-weight values, you can specify more
than one font file, depending on how you use the font in the web page.

A
dv

an
ce

d
CS

S3

CHAPTER 4 Advanced CSS3 171

Handling Media Queries
These days, it’s likely that your web applications will be viewed by site visitors
using a myriad of devices. Whether it’s on a large monitor connected to a desktop
workstation or a small mobile device that fits in the palm of your hand, your web
application will need to be presentable to all your website visitors.

The CSS3 standard has some tricks that you can use to help determine just when
you need to alter the style and layout of your web pages, based on how your site
visitor is viewing the application. This section covers just how to use those tricks.

Using the @media command
The CSS2 standard defined the @media CSS command to help you detect what type
of device the web page is being viewed on. You can then create styles based on the
media type. This allows you to style the web page one way when your site visitor is
displaying it on a monitor screen and another way when the site visitor prints it out.

The CSS2 standard defined several different media types to use in the @media rule,
as shown in Table 4-3.

TABLE 4-3	 The CSS2 @media Types
Type Description

all All types of output devices

braille Devices that produce Braille

embossed Braille printers

handheld Mobile devices with small screens

print Printers

projection Large-screen projectors

screen Standard computer monitors

speech Text-to-speech readers

tty Teletype terminals

tv Television

172 BOOK 2 HTML5 and CSS3

You use the @media command in your standard style sheet to define styles used for
that specific type of device:

@media screen {

 body {

 font-family: sans-serif;

 font-size: 12pt;

 }

 h1 {

 font-family: sans-serif;

 font-size: 20pt;

 }

}

@media print {

 body {

 font-family: serif;

 font-size: 10pt;

 }

 h1 {

 font-family: serif;

 font-size: 18pt;

 }

}

These two @media commands define two sets of style rules — one for when the
web page appears on a monitor, and one for when the web page is printed. It’s up
to the browser to determine which situation dictates which @media command set
to use.

Dealing with CSS3 media queries
The CSS2 @media command went a long way toward helping you determine what
types of devices your site visitors are using to display your web application, but it
didn’t go quite far enough. For example, whether your site visitor is viewing your
web application on a big monitor or a small mobile device, the device evaluates to
the screen media type by the @media command.

The CSS3 standard solves that problem by adding media queries to the standard
@media commands. Media queries allow you to query the features supported by
the client browser and the device the browser is running on. You can add the
media queries to the standard @media commands to produce a customized rule set
for just about any type of circumstance.

A
dv

an
ce

d
CS

S3

CHAPTER 4 Advanced CSS3 173

Here’s the format of the media query:

@media type and feature

The type parameter defines the media type, similar to the CSS2 media types, but
now limits them to only four (all, print, screen, and speech). The feature
parameter defines new features available to query. The CSS3 media features avail-
able are shown in Table 4-4.

TABLE 4-4	 The CSS3 Media Features
Feature Description

any-hover Whether the device supports hovering a pointer over elements

any-pointer Whether the device supports a pointing device

aspect-ratio The height and width ratio of the viewing device

color The number of bits of color supported by the viewing device

color-index The number of colors the device can display

grid Whether the device supports a grid or a bitmap

height The height of the viewing area of the device

hover Whether the device supports hovering a pointer over elements

inverted-colors Whether the browser is capable of inverting colors

light-level The current ambient light level

max-aspect-ratio The maximum ratio between the width and height of the viewing area

max-color The maximum number of bits of color supported by the viewing area

max-color-index The maximum number of colors the device supports

max-device-aspect-ratio The maximum ratio between the width and height of the device

max-device-height The maximum height of the device

max-device-width The maximum width of the device

max-height The maximum height of the device viewing area

max-monochrome The maximum number of bits in a monochrome setting

max-resolution The maximum resolution of the device

(continued)

174 BOOK 2 HTML5 and CSS3

Feature Description

max-width The maximum width of the device

min-aspect-ratio The minimum ratio between the width and height of the viewing area

min-color The minimum number of bits of color supported by the viewing area

min-color-index The minimum number of colors the device supports

min-device-aspect-ratio The minimum ratio between the width and height of the device

min-device-height The minimum height of the device

min-device-width The minimum width of the device

min-height The minimum height of the device viewing area

min-monochrome The minimum number of bits in a monochrome setting

min-resolution The minimum resolution of the device

min-width The minimum width of the device

monochrome The number of bits of color in a monochrome setting

orientation The orientation (landscape or portrait) of the device

overflow-block How the device handles overflowing block elements

overflow-inline How the device handles overflowing inline elements

pointer Whether the device supports a pointing device

resolution The resolution of the device

scan Whether the device uses progressive or interlaced scanning

scripting Whether the device supports client-side scripting languages

update-frequency How quickly the device can update the viewing area

width The width of the device viewing area

TABLE	4-4	(continued)

Table 4-4 shows lots of different device features you can test to customize the
styles you apply to your web page. An example looks like this:

@media screen and (max-width: 1000px) {

 font-size: 12px;

}

A
dv

an
ce

d
CS

S3

CHAPTER 4 Advanced CSS3 175

@media screen and (max-width: 500px) {

 font-size: 10px;

}

The first rule only applies to devices that have a maximum viewing area width of
100 pixels. It uses the 12-pixel font size for the text on the web page. The second
rule only applies to devices that have a maximum viewing area of 500 pixels (such
as a mobile device). It uses the 10-pixel font size for the text on the web page to
make it smaller.

Applying multiple style sheets
You can also use the media types and features queries in the <link> tag to refer-
ence specific external style sheets depending on the media features. This allows
you to apply entirely different style sheets to the web page based on the device
your site visitor is using to view it. Here’s the format for doing that:

<link rel="stylesheet" href="desktop.css" media="screen and (max-width:500px)">

Now the browser will apply the desktop.css external style sheet only if the device
has a maximum viewing area width of 500 pixels.

It’s always a good idea to have separate style sheets for mobile devices for your
web application. Usually, you’ll need to change the layout of navigation buttons to
make them easily accessible on the mobile device, as well as limit the content that
you display in the web page.

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part1 Getting Started with Web Programming
	Chapter 1 Examining the Pieces of Web Programming
	Creating a Simple Web Page
	Kicking things off with the World Wide Web
	Making sense of markup languages
	Retrieving HTML documents
	Styling

	Creating a Dynamic Web Page
	Client-side programming
	Server-side programming
	Combining client-side and server-side programming

	Storing Content

	Chapter 2 Using a Web Server
	Recognizing What’s Required
	The web server
	The PHP server
	The database server

	Considering Your Server Options
	Using a web-hosting company
	Building your own server environment
	Using premade servers

	Tweaking the Servers
	Customizing the Apache Server
	Customizing the MySQL server
	Customizing the PHP server

	Chapter 3 Building a Development Environment
	Knowing Which Tools to Avoid
	Graphical desktop tools
	Web-hosting sites
	Word processors

	Working with the Right Tools
	Text editors
	Program editors
	Integrated development environments
	Browser debuggers

	Part2 HTML5 and CSS3
	Chapter 1 The Basics of HTML5
	Diving into Document Structure
	Elements, tags, and attributes
	Document type
	Page definition
	Page sections

	Looking at the Basic HTML5 Elements
	Headings
	Text groupings
	Breaks

	Marking Your Text
	Formatting text
	Using hypertext

	Working with Characters
	Character sets
	Special characters

	Making a List (And Checking It Twice)
	Unordered lists
	Ordered lists
	Description lists

	Building Tables
	Defining a table
	Defining the table’s rows and columns
	Defining the table headings

	Chapter 2 The Basics of CSS3
	Understanding Styles
	Defining the rules of CSS3
	Applying style rules
	Cascading style rules

	Styling Text
	Setting the font
	Playing with color

	Working with the Box Model
	Styling Tables
	Table borders
	Table data

	Positioning Elements
	Putting elements in a specific place
	Floating elements

	Chapter 3 HTML5 Forms
	Understanding HTML5 Forms
	Defining a form
	Working with form fields

	Using Input Fields
	Text boxes
	Password entry
	Check boxes
	Radio buttons
	Hidden fields
	File upload
	Buttons

	Adding a Text Area
	Using Drop-Down Lists
	Enhancing HTML5 Forms
	Data lists
	Additional input fields

	Using HTML5 Data Validation
	Holding your place
	Making certain data required
	Validating data types

	Chapter 4 Advanced CSS3
	Rounding Your Corners
	Using Border Images
	Looking at the CSS3 Colors
	Playing with Color Gradients
	Linear gradients
	Radial gradients

	Adding Shadows
	Text shadows
	Box shadows

	Creating Fonts
	Focusing on font files
	Working with web fonts

	Handling Media Queries
	Using the @media command
	Dealing with CSS3 media queries
	Applying multiple style sheets

	Chapter 5 HTML5 and Multimedia
	Working with Images
	Placing images
	Styling images
	Linking images
	Working with image maps
	Using HTML5 image additions

	Playing Audio
	Embedded audio
	Digital audio formats
	Audio the HTML5 way

	Watching Videos
	Paying attention to video quality
	Looking at digital video formats
	Putting videos in your web page

	Getting Help from Streamers

	Part3 JavaScript
	Chapter 1 Introducing JavaScript
	Knowing Why You Should Use JavaScript
	Changing web page content
	Changing web page styles

	Seeing Where to Put Your JavaScript Code
	Embedding JavaScript
	Using external JavaScript files

	The Basics of JavaScript
	Working with data
	Data types
	Arrays of data
	Operators

	Controlling Program Flow
	Conditional statements
	Loops

	Working with Functions
	Creating a function
	Using a function

	Chapter 2 Advanced JavaScript Coding
	Understanding the Document Object Model
	The Document Object Model tree
	JavaScript and the Document Object Model

	Finding Your Elements
	Getting to the point
	Walking the tree

	Working with Document Object Model Form Data
	Text boxes
	Text areas
	Check boxes
	Radio buttons

	Chapter 3 Using jQuery
	Loading the jQuery Library
	Option 1: Downloading the library file to your server
	Option 2: Using a content delivery network

	Using jQuery Functions
	Finding Elements
	Replacing Data
	Working with text
	Working with HTML
	Working with attributes
	Working with form values

	Changing Styles
	Playing with properties
	Using CSS objects
	Using CSS classes

	Changing the Document Object Model
	Adding a node
	Removing a node

	Playing with Animation

	Chapter 4 Reacting to Events with JavaScript and jQuery
	Understanding Events
	Event-driven programming
	Watching the mouse
	Listening for keystrokes
	Paying attention to the page itself

	Focusing on JavaScript and Events
	Saying hello and goodbye
	Listening for mouse events
	Listening for keystrokes
	Event listeners

	Looking at jQuery and Events
	jQuery event functions
	The jQuery event handler

	Chapter 5 Troubleshooting JavaScript Programs
	Identifying Errors
	Working with Browser Developer Tools
	The DOM Explorer
	The Console
	The Debugger

	Working Around Errors

	Part4 PHP
	Chapter 1 Understanding PHP Basics
	Seeing the Benefits of PHP
	A centralized programming language
	Centralized data management

	Understanding How to Use PHP
	Embedding PHP code
	Identifying PHP pages
	Displaying output
	Handling new-line characters

	Working with PHP Variables
	Declaring variables
	Seeing which data types PHP supports
	Grouping data values with array variables

	Using PHP Operators
	Arithmetic operators
	Arithmetic shortcuts
	Boolean operators
	String operators

	Including Files
	The include() function
	The require() function

	Chapter 2 PHP Flow Control
	Using Logic Control
	The if statement
	The else statement
	The elseif statement
	The switch statement

	Looping
	The while family
	The for statement
	The foreach statement

	Building Your Own Functions
	Working with Event-Driven PHP
	Working with links
	Processing form data

	Chapter 3 PHP Libraries
	How PHP Uses Libraries
	Exploring PHP extensions
	Examining the PHP extensions
	Including extensions
	Adding additional extensions

	Text Functions
	Altering string values
	Splitting strings
	Testing string values
	Searching strings

	Math Functions
	Number theory
	Calculating logs and exponents
	Working the angles
	Hyperbolic functions
	Tracking statistics

	Date and Time Functions
	Generating dates
	Using timestamps
	Calculating dates

	Image-Handling Functions

	Chapter 4 Considering PHP Security
	Exploring PHP Vulnerabilities
	Cross-site scripting
	Data spoofing
	Invalid data
	Unauthorized file access

	PHP Vulnerability Solutions
	Sanitizing data
	Validating data

	Chapter 5 Object-Oriented PHP Programming
	Understanding the Basics of Object-Oriented Programming
	Defining a class
	Creating an object instance

	Using Magic Class Methods
	Defining mutator magic methods
	Defining accessor magic methods
	The constructor
	The destructor
	Copying objects
	Displaying objects

	Loading Classes
	Extending Classes

	Chapter 6 Sessions and Carts
	Storing Persistent Data
	The purpose of HTTP cookies
	Types of cookies
	The anatomy of a cookie
	Cookie rules

	PHP and Cookies
	Setting cookies
	Reading cookies
	Modifying and deleting cookies

	PHP and Sessions
	Starting a session
	Storing and retrieving session data
	Removing session data

	Shopping Carts
	Creating a cart
	Placing items in the cart
	Retrieving items from a cart
	Removing items from a cart
	Putting it all together

	Part5 MySQL
	Chapter 1 Introducing MySQL
	Seeing the Purpose of a Database
	How databases work
	Relational databases
	Database data types
	Data constraints
	Structured Query Language

	Presenting MySQL
	MySQL features
	Storage engines
	Data permissions

	Advanced MySQL Features
	Handling transactions
	Making sure your database is ACID compliant
	Examining the views
	Working with stored procedures
	Pulling triggers
	Working with blobs

	Chapter 2 Administering MySQL
	MySQL Administration Tools
	Working from the command line
	Using MySQL Workbench
	Using the phpMyAdmin tool

	Managing User Accounts
	Creating a user account
	Managing user privileges

	Chapter 3 Designing and Building a Database
	Managing Your Data
	The first normal form
	The second normal form
	The third normal form

	Creating Databases
	Using the MySQL command line
	Using MySQL Workbench
	Using phpMyAdmin

	Building Tables
	Working with tables using the command-line interface
	Working with tables using Workbench
	Working with tables in phpMyAdmin

	Chapter 4 Using the Database
	Working with Data
	The MySQL command-line interface
	The MySQL Workbench tool
	The phpMyAdmin tool

	Searching for Data
	The basic SELECT format
	More advanced queries

	Playing It Safe with Data
	Performing data backups
	Restoring your data

	Chapter 5 Communicating with the Database from PHP Scripts
	Database Support in PHP
	Using the mysqli Library
	Connecting to the database
	Closing the connection
	Submitting queries
	Retrieving data
	Being prepared
	Checking for errors
	Miscellaneous functions

	Putting It All Together

	Part6 Creating Object-Oriented Programs
	Chapter 1 Designing an Object-Oriented Application
	Determining Application Requirements
	Creating the Application Database
	Designing the database
	Creating the database

	Designing the Application Objects
	Designing objects
	Coding the objects in PHP

	Designing the Application Layout
	Designing web page layout
	The AuctionHelper page layout

	Coding the Website Layout
	Creating the web page template
	Creating the support files

	Chapter 2 Implementing an Object-Oriented Application
	Working with Events
	Bidder Object Events
	Listing bidders
	Adding a new bidder
	Searching for a bidder

	Item Object Events
	Listing items
	Adding a new item
	Searching for an item

	Logging Out of a Web Application
	Testing Web Applications

	Chapter 3 Using AJAX
	Getting to Know AJAX
	Communicating Using JavaScript
	Considering XMLHttpRequest class methods
	Focusing on XMLHttpRequest class properties
	Trying out AJAX

	Using the jQuery AJAX Library
	The jQuery $.ajax() function
	The jQuery $.get() function

	Transferring Data in AJAX
	Looking at the XML standard
	Using XML in PHP
	Using XML in JavaScript

	Modifying the AuctionHelper Application

	Chapter 4 Extending WordPress
	Getting Acquainted with WordPress
	What WordPress can do for you
	How to run WordPress
	Parts of a WordPress website

	Installing WordPress
	Downloading the WordPress software
	Creating the database objects
	Configuring WordPress

	Examining the Dashboard
	Using WordPress
	Exploring the World of Plugins
	WordPress APIs
	Working with plugins and widgets

	Creating Your Own Widget
	Coding the widget
	Activating the widget plugin
	Adding the widget

	Part7 Using PHP Frameworks
	Chapter 1 The MVC Method
	Getting Acquainted with MVC
	Exploring the MVC method
	Digging into the MVC components
	Communicating in MVC

	Comparing MVC to Other Web Models
	The MVP method
	The MVVM method

	Seeing How MVC Fits into N-Tier Theory
	Implementing MVC

	Chapter 2 Selecting a Framework
	Getting to Know PHP Frameworks
	Convention over configuration
	Scaffolding
	Routing
	Helper methods
	Form validation
	Support for mobile devices
	Templates
	Unit testing

	Knowing Why You Should Use a Framework
	Focusing on Popular PHP Frameworks
	CakePHP
	CodeIgniter
	Laravel
	Symfony
	Zend Framework

	Looking At Micro Frameworks
	Lumen
	Slim
	Yii

	Chapter 3 Creating an Application Using Frameworks
	Building the Template
	Initializing the application
	Exploring the files and folders
	Defining the database environment

	Creating an Application Scaffold
	Installing the scaffolding
	Exploring the scaffolding code

	Modifying the Application Scaffold
	Adding a new feature link
	Creating the controller code
	Modifying the model code
	Painting a view

	Index
	EULA

