
CHAPTER 5 HTML5 and Multimedia 177

HTML5 and Multimedia

Multimedia has taken over the Internet. Thanks to the popularity of
websites like YouTube, these days if your website doesn’t support some
type of multimedia content, your visitors will consider it old school and

may pass it by. This chapter examines the multimedia features available in HTML5
and shows you how to implement images, audio, and video in your dynamic web
applications.

Working with Images
The most basic type of multimedia to put on a web page is a picture. The old say-
ing “a picture is worth a thousand words” is somewhat true, especially in the web
world. Placing images on your web page can help break up the monotony of plain
text, as well as help add to your content in an attractive manner. Often, the first
thing a new website visitor will notice are the images.

The HTML standard has always supported placing images within web pages, but
there are a few new tricks that you can try using HTML5 and CSS3 to make your
images stand out. This section shows just how to do that.

Chapter 5

IN THIS CHAPTER

 » Working with images

 » Playing audio

 » Watching videos

178 BOOK 2 HTML5 and CSS3

Placing images
The img element allows you to place an image file on the web page. The img ele-
ment uses a one-sided tag, , that uses attributes to define the image and
how the browser should display it.

Here’s the basic format for the tag:

The src attribute defines the location of the image file to display. You can specify
the location as a relative or absolute file path for images stored on the same server
as the web page, or you can use a URL to reference images stored on another
server.

The alt attribute defines alternative text that appears if the browser can’t display
the image, such as if the image file is missing if the browser doesn’t support dis-
playing images (such as a text-based browser), if your site visitor is using a screen
reader, or if your website is being read by a search engine. For all your images, it’s
a good idea to provide a good description of not only the image, but also any action
that occurs in the image. You do this in the alternative text attribute.

By default, the browser displays the image at full size in the browser window. That
may not always be what you want, or you may just want more control over how
or where the image appears. To help control that you use the width and height
attributes to define a specific viewing area for the image to fit into.

Alternatively, instead of using the width and height attributes, you can use the
style attribute and define the width and height as style properties:

Either method is allowed in HTML5, although using an inline style will help pre-
vent accidental styling of the image from an external style sheet.

Browsers are able to display most image types these days, but some image types
are more suited for web pages than others. The JPEG image type is commonly
used on web pages because it compresses the image to a smaller file size, making
it quicker to download to the client browser. Using image files that are too large
may ruin the experience for some of your website visitors, especially those who
are using mobile data connections. No one likes having to wait for an image to
load on a web page.

H
TM

L5
 a

nd
 M

ul
ti

m
ed

ia

CHAPTER 5 HTML5 and Multimedia 179

Styling images
The CSS3 standard defines some additional styles that you can apply to the images
on your web page to make them stand out even more. In Book 2, Chapter 4, I dem-
onstrate how you can use the CSS3 shadow effect on elements to help give them a
3D effect. You can use that effect on images on the web page, too. That adds a nice
touch to help make the image pop out from the web page.

Another handy style added by the CSS3 standard is the transform property. The
transform property allows you to alter how an image appears on the web page,
such as scale it, rotate it, or even skew it! There are functions for both 2D and
3D manipulation of the images. Table 5-1 lists the 2D transform effects that are
available.

The rotate() function is one of my favorites. Just by adding the rotate() func-
tion to a standard image, you can help make it stand out from the text content on
the web page. You can try that out yourself by following these steps:

1. Open your favorite text editor, program editor, or integrated develop-
ment environment (IDE) package.

TABLE 5-1	 The CSS3 2D Transform Effects
Effect Description

matrix(a,b,c,d,e,f) Combines the translation, scale, skew, and rotation effects in one property

rotate(angle) Rotates the object clockwise by the specified angle

scale(x,y) Resizes the object by a factor of x horizontally and y vertically

scaleX(x) Resizes the object horizontally only by a factor of x

scaleY(y) Resizes the object vertically only by a factor of y

skew(x,y) Offsets the object horizontally by an angle of x and horizontally by an angle of y

skewX(x) Offsets the object horizontally only by an angle of x

skewY(y) Offsets the object vertically only by an angle of y

translate(x,y) Moves the object x pixels to the right and y pixels down

translateX(x) Moves the object x pixels to the right

translateY(y) Moves the object y pixels down

180 BOOK 2 HTML5 and CSS3

2. In the editor window, type the following code:

<!DOCTYPE html>

<html>

<head>

<title>Image Rotation Test</title>

<style>

 #img1 {

 float: left;

 transform: rotate(30deg);

 box-shadow: black 10px 5px 15px;

 }

 #img2 {

 float: left;

 transform: rotate(-30deg);

 box-shadow: black 10px 5px 15px;

 }

</style>

</head>

<body>

<h1>Testing the image rotation feature</h1>

<header>

<h1>My vacation photos</h1>

</header>

<section>

</section>

</body>

</html>

3. Save the file as imagetest.html in the DocumentRoot folder for your web
server.

For XAMPP on Windows, that’s c:\xampp\htdocs. For XAMPP on macOS, that’s
/Applications/XAMPP/htdocs.

4. Find two of your favorite image files and copy them to the same folder as
the imagetest.html file.

You’ll need to either rename them as image1.jpg and image2.jpg or change
the code in the imagetest.html file to match your image filenames.

5. Start the web server if necessary.

H
TM

L5
 a

nd
 M

ul
ti

m
ed

ia

CHAPTER 5 HTML5 and Multimedia 181

6. Open a browser and go to the URL for the file.

If you’re using the XAMPP server set to TCP port 8080, use the following:

http://localhost:8080/imagetest.html

7. Close the browser and shut down the web server.

The code in the imagetest.html file places two images on the web page. The
first image is rotated by a negative value so that it rotates counterclockwise;
the second image is rotated by a positive value so that it rotates clockwise.
Figure 5-1 shows the results using my test image.

That’s a great start to a professional-looking website!

Linking images
You can also use images as links to other web pages or locations. You do that by
embedding the tag inside an anchor element:

<img src="children.jpg" alt="Children's clothes"

style="width: 50px; height: 50px; border: 0px;">

If the website visitor clicks anywhere on the image, the browser responds just as
if the anchor element was a hypertext link, redirecting the browser to the destina-
tion defined by the href attribute.

FIGURE 5-1:
Rotating images

on the web page.

182 BOOK 2 HTML5 and CSS3

It’s also a good idea to add the border style property to the anchor style element
and set it to 0 pixels to prevent the browser from drawing an ugly border around
the image to indicate that it’s a link.

Working with image maps
Linked images are nice, but how about those fancy map images that allow you to
click in different parts of the map to go to different locations? You do that by using
image maps. An image map allows you to define sections of an image that act just
like a hyperlink. You can define each section to redirect the visitor’s browser to a
different location.

Creating an image map requires that you first define the map and then apply it to
your image. To define the map, you use the map element:

<map name="mapname">

 map area definitions

</map>

The name attribute is important, because you’ll use that to reference the map from
the image tag in the usemap attribute:

After you define the map, you need to define one or more map areas. Each map
area defines a specific location on the image to create a hotspot (clickable region).
You define the map areas using the <area> tag:

<area shape="shape" cords="coordinates" href="location" alt="text">

The combination of the shape and coordinates defines the area in the image for
the hotspot. Table 5-2 shows how to match those up.

TABLE 5-2	 Defining the Area Element Hotspots
Shape Value Description

circle Defines the x and y location of the circle center, as well as the radius value

poly Defines multiple x and y locations for each point of the polygon

rect Defines the x and y coordinates for the upper-left corner and the lower-right corner

default No coordinates necessary; uses the remaining unmapped area of the image

H
TM

L5
 a

nd
 M

ul
ti

m
ed

ia

CHAPTER 5 HTML5 and Multimedia 183

Defining an image map can be somewhat difficult. You’ll need to know the exact
size of the image on the web page and be able to define the exact location for each
area hotspot. This is where a good image manipulation tool such as Photoshop or
GIMP can come in handy. Anything that allows you to count pixels in the image
will help you plot out the hotspots.

Here’s an example of defining an image map for an image:

<map name="storemap">

<area shape="rect" coords="0, 0, 100, 500" href="books.html" alt="shop our

books">

<area shape="rect" coords="101, 0, 200, 500" href="furniture.html" alt="shop our

furniture">

<area shape="rect" coords="201, 0, 300, 500" href="clothes.html" alt="shop our

clothes">

<area shape="rect" coords="301, 0, 400, 500" href="tools.html" alt="shop our

selection of tools">

<area shape="rect" coords="401, 0, 500, 500" href="food.html" alt="shop for some

groceries">

</map>

After you define the image map, you associate it to an image by adding the usemap
attribute to the tag:

The #storemap value references the storemap name attribute, so the browser
applies that image map to the image on the web page. Clicking each individual
section takes you to the associated href location defined for that area.

Using HTML5 image additions
Besides the standard HTML image features, HTML5 adds a couple of new image
features that you can use in your web pages.

Figures and captions
It’s common to want to place captions around images that you display on the web
page. You can do that with standard HTML and CSS, but it takes some calculating
to get the positioning correct, and if anything on the web page moves, the image
and caption may get out of sync.

HTML5 adds the figure element to match images and captions together. The figure
element encloses the image, along with a figcaption element, creating a single

184 BOOK 2 HTML5 and CSS3

object that you can position and move around on the web page. Here’s the general
format for all that:

<figure>

<figcaption>Figure 1: Creating a web page</figcaption>

</figure>

You can now add styles for the figure element to position both the image and
its associated caption on the web page together as a single object. In this exam-
ple, the caption will appear under the image. If you prefer, you can place the
<figcaption> tag above the image, too, by just listing it before the tag.

You can use the figure element to link other objects with captions, too. For exam-
ple, use the p element instead of the img element for embedding quotes inside
a text section and linking them to the citation for the quote in the figcaption
element.

The picture element
The tag, along with the transform CSS property, allows you to scale images
to fit a specific area on the web page:

img {

 transform: scale(80,60);

}

This solution doesn’t always produce the best-quality image for the device. With
website visitors using a multitude of different devices, each with a different aspect
ratio and screen size, it’s hard to get one image to work in all situations.

The HTML5 standard has a solution for that problem. Instead of trying to scale
one image to fit everywhere, you can define multiple versions of an image to dis-
play for different environments. You just need to define the environment param-
eters for the browser to test to know which image to display. You do that using
the picture element.

The HTML5 picture element allows you to define one or more sources for the
image, along with defining media rules to determine when each source should be
used. I cover media rules in Book 2, Chapter 4, where I discuss how to use media
rules to load different style sheets based on different properties of the website
visitor’s device. This is the same concept.

H
TM

L5
 a

nd
 M

ul
ti

m
ed

ia

CHAPTER 5 HTML5 and Multimedia 185

The picture element uses the <picture> tag, along with one or more source ele-
ments. Each source element defines a media rule and the image to use if the device
meets the media rule criteria. The format for all that looks like this:

<picture>

<source media="(min-width: 1000px)" srcset="large.jpg">

<source media="(min-width: 500px)" srcset="small.jpg">

</picture>

When the browser sees the picture element, it evaluates each of the source ele-
ments inside, from the first to the last. The first source element that matches the
media environment is used to display the image defined in the srcset attribute.
If none of the media tests defined in the source elements passes, the browser uses
the image defined in the tag.

Playing Audio
The original HTML standard didn’t account for playing audio clips in web pages.
That created a free-for-all of methods developed to incorporate audio. Many dif-
ferent solutions were created along the way.

One such solution is to reference an audio file stored on the server using a stan-
dard anchor element:

Click to play

When the site visitor clicks the hypertext link, the browser downloads the audio
file and opens an appropriate audio player from the workstation to play it. That’s
a pretty clunky way of trying to incorporate audio into a web page.

The following sections discuss better ways of playing audio files in your web pages.

Embedded audio
The next step in the evolution of playing audio in web pages was the plugin. A
plugin is a separate program that runs inside the browser to support additional
features. Over the years, several different audio plugins had been developed, but
the three most common were

186 BOOK 2 HTML5 and CSS3

 » QuickTime: A plugin developed by Apple, used mainly in the Safari
web browser.

 » RealAudio: A vendor-neutral attempt to create an audio plugin. It only
supports its own proprietary audio file format.

 » Flash: Developed by Adobe, Flash became a popular format for playing both
audio and video files in browsers.

To play an audio file using a plugin, you had to use the embed element, which
signals to the browser that some type of external file is embedded inside the web
page and to find the appropriate plugin to handle the embedded file. The embed
element uses the one-sided <embed> tag, with the following format:

<embed src="location" type="mime" width=x height=y>

The src attribute defines the location of the audio file, either as an absolute or
relative path on the local server, or as a URL to point to an audio file stored on a
remote server.

The width and height attributes are used if the plugin requires space on the web
page to display an interface. Some audio plugins provide an interface to stop,
start, and pause playing the audio file.

The type attribute defines the type of multimedia file. It uses the standard Multi-
media Internet Mail Extension (MIME) type names to identify the audio file type. As
the name suggests, MIME types were originally developed for sending binary files
through email, but they’re also used by web browsers for embedded binary files
in web pages. The browser uses the MIME type to determine just what plugin to
use to process the embedded file. Different audio file formats (such as QuickTime
or RealAudio) require a different plugin to play. This is where it helps to know the
different formats available for digital audio files.

Digital audio formats
Since the transition from vinyl records to the digital world, many different meth-
ods had been used for converting analog sound to digital media. The process of
converting sound to digital signals consists of three elements:

 » Sampling rate: How often the sound amplitude is measured and quantified
to a digital value

 » Sample resolution: How many bits of data are used for each sample digital value

 » Compression: How the final digital data is compressed to make an audio file

H
TM

L5
 a

nd
 M

ul
ti

m
ed

ia

CHAPTER 5 HTML5 and Multimedia 187

The combination of the sampling rate and sample resolution result in the
bit rate used for the digital recording. The larger the bit rate, the more accu-
rately the digital playback will produce the original analog signal. However, the
larger the bit rate, the more digital data that is generated and, thus, required to
store the audio file.

A standard CD format for digital audio uses a bit rate of 1411 Kbps, which results in
an extremely accurate reproduction, but also an extremely large file size (around
10MB) for each audio track. It’s impractical to send a standard CD audio track
across the Internet to play on client browsers.

This is where compression comes into play. Because the original audio files are too
large to use on the web, we need to incorporate some type of compression scheme
to make them more manageable. Unfortunately, over the years, many different
companies have developed proprietary compression techniques, resulting in our
current myriad of different audio file types. Table 5-3 lists the more common
audio file types in use, along with their file extensions and MIME types.

Each of these audio file formats has its own pros and cons to deal with. Different
audiophiles have different opinions on which method is the best. To make matters
more complicated, many of these audio file formats are proprietary and require a
license to embed a player in a browser. The MP3 audio type has become the de facto

TABLE 5-3	 Audio File and MIME Types
Audio File MIME Description

AAC .aac audio/aac Apple audio coding

AU .au audio/basic Sun Microsystems standard for
Unix systems

MIDI .mid audio/mid Musical Instrument Digital Interface
standard for recording instruments

MP3 .mp3 audio/mpeg Motion Picture Experts Group standard

Ogg Vorbis .ogg audio/ogg Open-source standard

RealAudio .ra audio/x-pn-realaudio Real Media standard for streaming audio

SND .snd audio/basic SouND format, developed by Apple based
on the AU audio format

Shockwave Flash .swf audio/x-shockwave-flash Adobe proprietary format

WAV .wav audio/wav Waveform Audio format developed by
Microsoft for uncompressed audio

188 BOOK 2 HTML5 and CSS3

standard over the years due to its high compression rate and high audio quality,
but many developers don’t like using MP3 because of its proprietary nature.

The Ogg Vorbis audio type is an open-source standard, free to use in any envi-
ronment. However, it hasn’t been widely adopted by all browsers yet (including
Internet Explorer and Safari) due to its perceived lack of audio quality compared
to other compression methods.

At the time of this writing, the only audio file type supported by all the major
browsers is MP3. However, if your site visitor is using a Linux workstation, due to
licensing restrictions, the MP3 codecs are often not loaded by default on all Linux
distributions.

If you embed an audio file into your web page and a visitor doesn’t have the appro-
priate plugin to handle it, the browser will react in one of three ways:

 » Display an error message in place of the embedded audio file

 » Display a pop-up message indicating the plugin required to play the audio file

 » Redirect the web page to the web page for the required plugin

All three of these results are less than optimal for your web page. Fortunately, the
HTML5 standard has produced a better way to incorporate sounds into web pages.

Audio the HTML5 way
The key to embedding audio files into your web pages is similar to how you handle
displaying images — it’s best to have multiple versions available and let each site
visitor’s browser decide which one to use. The HTML5 standard provides a way for
you to do that with the audio element.

The audio element works just like the picture element (see the “Using HTML5
image additions” section, earlier in this chapter). You use the <audio> tag to open
a list of audio sources, defined using the <source> tag. Each source specifies a
different audio file format for the browser to try. The first one in the list that the
browser supports is what gets requested and played by the browser. That looks
like this:

<audio>

<source src="myaudio.mp3" type="audio/ogg">

<source src="myaudio.ogg" type="audio/mpeg">

<source src="myaudio.wav" type="audio/wav">

</audio>

H
TM

L5
 a

nd
 M

ul
ti

m
ed

ia

CHAPTER 5 HTML5 and Multimedia 189

For the source elements, you use the src attribute to indicate the location of the
audio file to play, as well as the type attribute to indicate the MIME type of the
audio file. It’s up to the browser to decide which one to use. In this example,
the browser attempts to play the MP3 version first. Then for Linux workstations
where that’s not available, it automatically attempts to load and play the Ogg Vor-
bis version. If that’s not available, it’ll try to use the WAV version of the audio file.

The HTML5 standard only supports the MP3, Ogg Vorbis, and WAV audio file types.
Don’t try to use the audio element to embed a QuickTime or RealAudio audio file.
You’ll need to use the embed element to do that.

You can also place a short message after the <source> tag list for the browser to
display if it can’t support any of the listed MIME types:

<audio>

<source src="myaudio.mp3" type="audio/ogg" controls>

<source src="myaudio.ogg" type="audio/mpeg" controls>

Sorry, your browser doesn't support MP3 or OGG audio

</audio>

The <audio> tag has a few attributes to help alter how the browser handles the
audio file. Table 5-4 shows the available attributes.

The controls attribute is recommended, because it provides an interface for the
website visitor to have control over how or when the audio file plays. Each browser
has its own way of displaying audio controls. Figure 5-2 shows how the controls
appear in the Internet Explorer browser.

TABLE 5-4	 The <audio> Tag Attributes
Attribute Description

autoplay The browser should start playing the file as soon as the web page loads.

controls The browser should display a standard set of audio controls, such as Play, Stop,
and Pause buttons.

loop The browser should continually loop the audio file.

muted The browser should mute the audio track immediately.

preload Specifies whether the audio file should be loaded when the page loads or when the Play
button is clicked.

src Specifies the URL of an audio file when not using additional <source> tags.

190 BOOK 2 HTML5 and CSS3

The audio controls shown by browser are fairly simplistic — a Play/Pause button,
a Mute button, a slider to control the location in the audio file, and a sound level
slider. Don’t expect any fancy EQ settings to bump up the bass in your tunes!

In the past, it was somewhat commonplace to embed an audio file in a web page
and set it to automatically play with the loop feature enabled. This is a surefire
way to annoy your site visitors, and it may even cause issues for visitors who use
a screen reader to process your web page. I don’t recommend using this method.
Allow your site visitors the option of whether to play the audio embedded on your
web pages.

Watching Videos
These days, the world is full of video content. You can find videos on just about
every topic under the sun, including how to make your own videos! This section
walks through how you can embed videos in your web pages, but first, a quick look
at the different types of video files you may have to deal with.

Paying attention to video quality
Just like in the world of film, videos are composed of a series of individual images
(called frames) played at a set rate of speed (called the frame rate). The higher the
frame quality, the better the video quality. The higher the frame rate, usually the
better the video quality (with exceptions, as noted in this section).

FIGURE 5-2:
The audio

controls in the
Internet Explorer

browser.

H
TM

L5
 a

nd
 M

ul
ti

m
ed

ia

CHAPTER 5 HTML5 and Multimedia 191

You can use any frame size for the video images, but there are standard frame
sizes that are commonly used:

 » 160 x 120: Low-quality video using the 3:4 aspect ratio

 » 320 x 240: Higher-quality video, but still using the 3:4 aspect ratio

 » 640 x 480: Highest-quality video using the 3:4 aspect ratio

 » 1280 x 720: High-definition (HD) video using the 16:9 aspect ratio

 » 1920 x 1080: HD-quality video using the 16:9 aspect ratio

As you can guess, a higher quality of frame images means a larger video file.

The frame rate used for television video is 60 frames per second (fps). That frame
rate would create a huge video file. DVD-quality videos use 24fps as a compromise
between video quality and file size.

A fast frame rate isn’t necessarily a good thing with web video. As the video is
sent from the server to the client browser, the network gets in the way. Usually,
to help with a smooth playback, most browsers use a buffer to hold video data as
it downloads. When the buffer area is filled enough that the browser feels it can
play the video at the designated frame rate and keep up with the download, it
plays the video.

However, if the download slows down and the buffer starts to catch up with the
real-time data, video playback will appear choppy and reduce the viewing experi-
ence of your site visitors. This is why a high frame rate doesn’t necessarily equate
to a better video quality.

Looking at digital video formats
Just as with audio files, many different companies have devised different methods
of compressing videos for storage and playback. Unfortunately, this has resulted
in a hodge-podge of different video formats that we have to work with. Table 5-5
lists the more popular video formats you’ll most likely run into.

Just as with the audio files, each video file format has its own pros and cons, mak-
ing it difficult to decide which one to use. Although the WebM video standard was
developed by a consortium of browser developers, it’s actually one of the lesser-
used standards.

192 BOOK 2 HTML5 and CSS3

Putting videos in your web page
With the original version of HTML there was no standard way of embedding video
content in your web pages. Proprietary methods became popular, and the Adobe
Flash plugin became the de facto standard in web video.

However, HTML5 has changed that, by including a way to embed videos into your
web pages without requiring the use of a separate plugin. The new video element
is what does that.

As you can probably guess, the video element works the same way as the audio
element does. It allows you to provide a list of source elements that define differ-
ent videos using different MIME types. The basic format for that looks like this:

<video>

<source src="mymovie.mp4" type="video/mp4">

<source src="mymovie.ogg" type="video/ogg">

Sorry, your browser is unable to play the video

</video>

The browser attempts to play the first listed video, and if that fails, it tries the
second listed video. Then if that fails, the browser will display the text specified.

The HTML5 standard only defines support for the MP4, Ogg, and WebM video for-
mats. If you need to play another video format you can try to use the embed element.

TABLE 5-5	 Common Video Formats
Format File MIME Description

AVI .avi video/x-msvideo Audio Video Interleave. Developed by Microsoft.

Flash .flv video/x-flv Adobe Flash video.

MPEG .mpg video/mpg The original Motion Pictures Expert Group standard for
digital video.

MPEG-4 .mp4 video/mp4 Updated MPEG standard, currently in use.

Ogg Theora .ogg video/ogg Open-source video standard.

QuickTime .mov video/quicktime Developed by Apple.

RealVideo .rm video/x-pn-realvideo Developed by Real Media for video streaming.

WebM .webm video/webm Developed by browser developers as a common
video format.

WMV .wmv video/x-ms-wmv Microsoft standard video format.

H
TM

L5
 a

nd
 M

ul
ti

m
ed

ia

CHAPTER 5 HTML5 and Multimedia 193

The <video> tag supports some attributes that allow you to control the viewing
experience for your site visitors. Table 5-6 shows what attributes are available.

For videos, it’s imperative that you specify the height and width attributes to
maintain control of how the video appears in the web page. The browser will limit
the video to display within the area you specify. Figure 5-3 shows playing a video
with controls in the Internet Explorer web browser.

TABLE 5-6	 The <video> Tag Attributes
Attribute Description

autoplay Starts the video as soon as the web page loads

controls Displays a set of icons for controlling the video (such as Play, Stop, and Pause)

height Sets the height of the video display area in the web page

loop Specifies that the browser should continually loop through the video

muted Starts the video with muted audio

poster Specifies an image URL to show while the video is downloading

preload Loads the video when the web page loads instead of when the Play button is clicked

src Specifies the location of the video file

width Specifies the width of the video display area in the web page

FIGURE 5-3:
Playing a video
in the Internet

Explorer browser.

194 BOOK 2 HTML5 and CSS3

The video viewer in Internet Explorer provides a Play/Pause button, a status
 indicator showing the current position in the video file, a Mute button that also
displays a volume control when you click it, and a button that allows you to switch
to viewing the video in full-screen mode.

The same warning that I gave you about automatically playing audio files applies
to video files. Never assume that your site visitors will want to view the video as
soon as the web page loads, even if you include the muted attribute. Playing videos
takes a lot of processor power from the workstation; for site visitors using less
powerful devices, that may cause issues.

Getting Help from Streamers
Trying to provide your own videos in the correct format to display correctly in
all browsers can be somewhat of a challenge. Sometimes it’s best to cry “uncle,”
and let the professionals handle it. By “professionals,” I mean the myriad of
commercially available video-streaming services, such as YouTube, Vimeo, and
LiveStream. Most of these services allow you to register for free trials, and some
even allow you to host small videos for free in your own channel.

The beauty of using a streaming service is that usually you only need to upload
your video in one format; then the streaming service takes care of reformatting
the video to match other video formats or quality required by your website visi-
tors. No more having to reformat videos yourself and worrying about how they’ll
appear in different browsers, at different bandwidth speeds.

To embed a video from a streaming service requires that you use the old HTML
iframe element. The iframe element was popular in the early days of HTML as a
way of dividing a web page into separate sections. However, the iframe method
was clunky, and soon CSS provided a much better way of dividing web pages.

However, the iframe element has had something of a comeback as a container for
displaying streaming videos. The format uses the two-sided <iframe> tag:

<iframe width=x height=y src="location">

</iframe>

As you would expect, the width and height attributes are necessary to control the
size of the iframe area in your web page. The src attribute points to the custom
URL your streaming provider assigns to your uploaded video.

3JavaScript

Contents at a Glance
CHAPTER 1: Introducing JavaScript . 197

Knowing Why You Should Use JavaScript . 197
Seeing Where to Put Your JavaScript Code 199
The Basics of JavaScript . 203
Controlling Program Flow . 209
Working with Functions . 220

CHAPTER 2: Advanced JavaScript Coding . 223
Understanding the Document Object Model 223
Finding Your Elements . 233
Working with Document Object Model Form Data 238

CHAPTER 3: Using jQuery . 243
Loading the jQuery Library . 244
Using jQuery Functions . 246
Finding Elements . 247
Replacing Data . 250
Changing Styles . 254
Changing the Document Object Model . 259
Playing with Animation . 261

CHAPTER 4: Reacting to Events with JavaScript
and jQuery . 263
Understanding Events . 263
Focusing on JavaScript and Events . 267
Looking at jQuery and Events . 276

CHAPTER 5: Troubleshooting JavaScript Programs 283
Identifying Errors . 283
Working with Browser Developer Tools . 285
Working Around Errors . 295

CHAPTER 1 Introducing JavaScript 197

Introducing JavaScript

The previous minibook shows you how to use HTML5 and CSS3 to create
some pretty fancy-looking web pages. That’s the first step to creating your
dynamic web applications, but there are a few more parts to add. This mini-

book tackles the next piece you’ll need to add to your web programs: client-side
programming.

This chapter focuses on the JavaScript programming language, the most popular
client-side programming language in use today. First, I cover the basics of how
to add JavaScript code to your web pages. Then I explore some of the basics of the
JavaScript language.

Knowing Why You Should Use JavaScript
HTML5 and CSS3 work together to create web pages. The HTML5 code produces
the content that appears on the web page, and the CSS3 code helps style it to
change the format and location of the web page elements. So, what exactly does
JavaScript do to help augment those languages?

JavaScript is program code that you embed into the HTML5 code. The web server
sends the JavaScript program code to your site visitors’ web browsers, which in
turn detect and run the JavaScript code. The JavaScript code can alter features of
the web page that the HTML5 and CSS3 code produce. This section explains what
you can do with JavaScript code.

Chapter 1

IN THIS CHAPTER

 » Defining JavaScript

 » Adding JavaScript to your web pages

 » Working with data

 » Looking at JavaScript control
structures

 » Creating JavaScript functions

198 BOOK 3 JavaScript

Changing web page content
In your HTML5 code, you no doubt will have lots of text that appears in separate
sections of your web page. For example, you may have a sidebar element that lists
the day’s news events related to your website topic, or you may have a header ele-
ment that displays the current time and temperature for your city.

All that is great, but you need a way for that information to change dynamically,
each time your site visitors load the web page. This is where JavaScript comes in.

JavaScript code allows you to alter the text that appears on your web page “on the
fly,” without requiring your site visitors to reload the web page. You can create
JavaScript code that retrieves updated news articles even as your site visitors are
viewing your web pages. The information will change right before their eyes —
like magic!

Changing web page styles
Book 2, Chapter 2, explains how you add CSS3 styles to your web pages to apply
styles to text and elements, or to place elements in specific locations on the web
page. The CSS3 code you create is placed inline in the HTML5 elements, internally
in the head element of the web page, or as an external style sheet.

JavaScript code allows you to dynamically alter any style or position that you define
for an HTML5 element in your CSS3 code. That’s right — you can use JavaScript to
turn blue backgrounds yellow, orange text green, or even move an entire section
of text from one side of the web page to another! That’s a lot of control to have at
your fingertips.

One of the coolest features of JavaScript is the ability to dynamically make HTML5
elements appear out of nowhere! Each HTML5 element supports the display
style property, which you use to determine how or if the element appears on the
web page.

With JavaScript code you can dynamically alter the display style property for
any element on the web page to make it appear as needed or disappear when not
needed. That gives you the ability to dramatically alter the layout of a web page at
any time while your site visitor is interacting with the web page. This helps hide
sections that may be distracting to site visitors at times, then make them appear
when the site visitor needs to interact with them.

In
tr

od
uc

in
g

Ja
va

Sc
ri

pt

CHAPTER 1 Introducing JavaScript 199

Seeing Where to Put Your JavaScript Code
Now that I’ve sold you on the benefits of using JavaScript code in your web pages,
let’s take a look at how you include JavaScript code in your HTML5 code. There are
two ways of including JavaScript code in web pages:

 » Embedding the JavaScript code directly into the HTML5 code for the web page

 » Creating an external JavaScript file that the browser downloads and runs

This section walks through how to use both methods of working with JavaScript
code in your HTML5 code.

Embedding JavaScript
You embed JavaScript code directly into the HTML5 code for your web pages by
using the script element. The script element is a two-sided element, so it has an
opening and closing tag that surrounds your JavaScript code:

<script>

 JavaScript code

</script>

The script element informs the browser that there’s code to run as part of the web
page. Most browsers will recognize the JavaScript code that appears in the script
element and run the code using an internal JavaScript interpreter. However, some
programmers like to identify the type of code embedded in the script element
using the type attribute:

<script type="text/javascript">

This isn’t required in HTML5, but you’re more than welcome to use this format if
it helps you to remember that the embedded code is JavaScript. This can be espe-
cially helpful when you start embedding server-side programming languages,
such as PHP, in your HTML5 code as well.

You can place script elements anywhere in the HTML5 code. The browser will pro-
cess the JavaScript code as it parses the HTML5 code for the web page. However,
that affects how the JavaScript code runs and how any output generated by the
JavaScript code appears. The following sections demonstrate this.

200 BOOK 3 JavaScript

Embedding in the head element
If you place the script element inside the head element of the web page, the
browser will run the JavaScript code before it processes the code to build the web
page. Follow these steps to see how this works:

1. Open your favorite text editor, program editor, or integrated develop-
ment environment (IDE) package.

2. Enter the following code:

<!DOCTYPE html>

<html>

<head>

<title>Testing JavaScript in the Head Section</title>

<script>

alert("This is the JavaScript program!");

</script>

</head>

<body>

<h1>This is the web page</h1>

</body>

<html>

3. Save the code as scriptheadtest.html in the DocumentRoot folder for
your web server.

That’s c:\xampp\htdocs for XAMPP on Windows or /Applications/XAMPP/
htdocs for XAMPP on macOS.

4. Start the XAMPP Control Panel and start the Apache web server.

5. Open your browser and enter the following URL:

http://localhost:8080/scriptheadtest.html

You may have to alter the TCP port to match your web server setup.

6. Stop the Apache web server and exit from the XAMPP Control Panel.

The scriptheadtest.html code embeds a script element inside the head element
of the web page. Because this appears before the body section of the web page
code, the browser processes the JavaScript code before the body element section.
The script element contains a single line of JavaScript code:

alert("This is the JavaScript program!");

In
tr

od
uc

in
g

Ja
va

Sc
ri

pt

CHAPTER 1 Introducing JavaScript 201

The alert() function displays text in a pop-up dialog box, separate from the
main web page window of the browser.

When you run the program, you should see the alert dialog box pop-up, but no
text appears on the web page, as shown in Figure 1-1. That’s because the alert()
function stops the browser from processing any more code until the site visitor
clicks the OK button in the dialog box. The code is frozen in time, waiting for the
browser to continue processing the rest of the code.

When you run the test, your browser may not run the JavaScript code or it may
prompt you to allow the code to run. Some browsers have built-in security fea-
tures to block running JavaScript code embedded in a web page. You’ll need to
consult your browser documentation on how to enable JavaScript code, at least
from the localhost address, so your test programs can run.

Embedding in the body element
Alternatively, you can place the script element inside the body element section of
the web page. When you do this, the browser runs the JavaScript code when it gets
to the script element as it parses the HTML5 code to build the web page.

FIGURE 1-1:
Testing the

script
headtest.html

program file.

202 BOOK 3 JavaScript

Follow these steps to test this out:

1. Open your favorite text editor, program editor, or IDE package.

2. Enter the following code:

<!DOCTYPE html>

<html>

<head>

<title>Testing JavaScript in the Body Section</title>

</head>

<body>

<h1>This is the web page</h1>

<script>

alert("This is the JavaScript program!");

</script>

<h1>This is the end of the web page</h1>

</body>

<html>

3. Save the code as scriptbodytest.html in the DocumentRoot folder for
your web server.

That’s c:\xampp\htdocs for XAMPP on Windows or /Applications/XAMPP/
htdocs for XAMPP on macOS.

4. Start the XAMPP Control Panel and start the Apache web server.

5. Open your browser and enter the following URL:

http://localhost:8080/scriptbodytest.html

You may have to alter the TCP port to match your web server setup.

6. Stop the Apache web server and exit from the XAMPP Control Panel.

When you run the test, you should see the content from the first h1 element appear
on the web page, and the alert() function dialog box, but not the content from
the second h1 element. Figure 1-2 shows that result.

The browser processes the first h1 element in the body section and then stops to
run the JavaScript alert() function. After you click the OK button in the alert dia-
log box, the browser displays the section h1 element content.

Embedding JavaScript code inside the body element of a web page can slow down
how the web page loads. If the code location is not crucial, it’s best to place the
script element at the end of the body element, after the normal HTML5 code.

In
tr

od
uc

in
g

Ja
va

Sc
ri

pt

CHAPTER 1 Introducing JavaScript 203

Using external JavaScript files
If you have JavaScript code that you need to embed in all of your web pages, hav-
ing to retype the same code in each web page file can become tedious. And on top
of that, if you need to change anything in the code, you have to revisit every single
web page file that uses the code!

To solve that problem, you can use an external JavaScript file. The <script> open-
ing tag supports the src attribute, which allows you to define an external location
for the JavaScript code:

<script src="myjavascript.js"></script>

The src attribute can point to an absolute or relative file path on the local server,
or you can use a full URL to point to a JavaScript file stored on a remote server.
Note that although it’s not mandatory, it’s very common to use the .js file exten-
sion to identify JavaScript files.

You place the JavaScript code inside the external file just as it would appear
within the script element. Be careful though — don’t include the <script> and
</script> tags in the external JavaScript file.

The Basics of JavaScript
Now that you’ve seen where to put your JavaScript code in your web pages, you
can dive into coding using JavaScript. This section goes through the basics for get-
ting started with JavaScript coding.

FIGURE 1-2:
Running

JavaScript code in
the body section.

204 BOOK 3 JavaScript

Working with data
Data is the key to any program, and JavaScript programs are no exception. You’ll
need to work with different types of data in your dynamic web applications, every-
thing from bowling scores to employee records. Being able to manipulate that data
is an important function.

To manipulate data, the JavaScript program needs a way to temporarily store it
somewhere so that it can retrieve the data later on, manipulate it, and then display
it to the site visitor running the program. JavaScript does that using variables.
Variables are names that represent storage locations in the computer memory
where your JavaScript program can temporarily store data values. When your
JavaScript code places a value into a variable, the JavaScript interpreter converts
that action into the physical action of storing the data into the computer memory
for future use.

The downside to using variables to store data is that they only retain their values
for the duration of the program. You can’t save a data value to a variable in one
web page and then retrieve it in another web page. After your site visitor leaves
the web page, those values (and their data values) are gone forever. That’s why
we need some help from our MySQL database server — to have a place for storing
data long term!

For all the JavaScript variables that you use in your programs, you must assign
each one a unique name to represent the different memory locations. There are a
few rules you’ll need to remember when creating JavaScript variable names:

 » Variable names can contain letters, numbers, underscores, and dollar signs.

 » Variable names must begin with a letter, an underscore, or a dollar sign.

 » Variable names are case sensitive.

 » You can’t use JavaScript keywords as variable names.

Before you can use a variable in your JavaScript code, you must first declare it as a
variable using the var statement:

var test;

This format tells the JavaScript interpreter to set aside a place in memory for stor-
ing data and call that location test. For now, you haven’t assigned a specific value
to the test variable, so it contains what’s called an undefined value.

You can then use the JavaScript assignment operator to assign a value to the variable:

test = 10;

In
tr

od
uc

in
g

Ja
va

Sc
ri

pt

CHAPTER 1 Introducing JavaScript 205

If you prefer, you can both declare a variable and assign it a value in one statement:

var test = 10;

When you need to reference the value you stored in the variable later on in the
program code, you just refer to it using the variable name:

alert(test);

The JavaScript interpreter retrieves the value stored in the location the variable
represents and uses it just as if you had entered the value in the statement.

Data types
JavaScript variables can hold different types of data. The two basic data types are

 » Numbers: Either integer values (such as 5) or floating point values (such
as 3.1419)

 » Strings: A series of characters, strung together in memory one after the other
(thus the term strings)

Declaring a number value is somewhat straightforward:

var age = 20;

This statement places the numeric value of 20 into the memory location pointed
to by the age variable.

Declaring a string value is a little bit trickier:

var name = "Rich Blum";

You must enclose the string value in quotes. That delineates the start and end of
the string value. If you forget the quotes, you’ll get a JavaScript error message.

One interesting feature of JavaScript is that it uses dynamic data typing. With
dynamic data typing, you don’t need to tell JavaScript what type of data a variable
contains ahead of time, like some other programming languages require. Instead,
JavaScript will automatically try to figure out the type of data from the values
you use.

206 BOOK 3 JavaScript

With dynamic data typing, you can also use the same variable name to hold dif-
ferent data types at different times. For example, after declaring the age variable
with a number, later in the program you could then do the following:

age = "really old";

JavaScript won’t complain that you started out storing a number in the age vari-
able and then shifted to storing a string value, it just happily changes the value
stored in that variable.

Although dynamic data types can come in handy, they can also cause problems if
you’re not careful. If you try to perform a mathematical operation on a variable
that contains a string value, you won’t get what you might have been expect-
ing. Always keep track of what type of data you’re storing in variables in your
programs.

Arrays of data
JavaScript allows you to store multiple values in a single variable. These variables
are called arrays.

If you have an application that contains a list of items, it can often be somewhat
clunky to specify each item as a separate variable:

var score1 = 100;

var score2 = 110;

var score3 = 105;

If you need to perform any type of operation on the variables, you need to know
exactly how many variables are used to contain the list of items.

Arrays allow us to store an entire list of items into a single variable:

var scores = [100, 110, 105];

The scores array variable contains three items (called elements). You reference
an individual element value by using an index value. You specify the index using
brackets with the array variable:

scores[0]

This array variable contains the first element of the array (the value 100 in this
example). Note that the first element of the array is at index 0, a very unfortunate
fact that’s important to remember when working with arrays in JavaScript!

In
tr

od
uc

in
g

Ja
va

Sc
ri

pt

CHAPTER 1 Introducing JavaScript 207

You can change an individual array element value using the index in a standard
assign statement:

scores[1] = 120;

This replaces the 110 value in the array with a value of 120.

JavaScript treats arrays as objects. An object has properties, as well as methods
that you can run against the object. Properties return features for the array, such
as the length property:

var games = scores.length

Methods are used to manipulate the values within the object:

scores.sort();

You can add new values to an existing array by using the push() method:

scores.push(115);

This allows you to dynamically store and retrieve data values from a single vari-
able location in your program, without having to know exactly how many data
values it will need to retain.

Operators
JavaScript provides different operators for working with data. An operator per-
forms some type of manipulation of the data provided. Table 1-1 shows the basic
math operators that JavaScript uses.

TABLE 1-1	 JavaScript Math Operators
Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus (the remainder of a division operation)

++ Increment (increases the value by 1)

-- Decrement (decreases the value by 1)

208 BOOK 3 JavaScript

You use the math operators as part of an assignment statement:

result = 10 + 5;

The JavaScript interpreter performs the operation on the right side of the equal
sign and then assigns the result to the variable declared on the left side. You can
use variables with the operators as well:

var side1 = 10;

var side2 = 5;

var area = side1 * side2;

Again, JavaScript performs the operation on the right side of the assignment
operator first and then assigns the result to the variable declared on the left side.
In this example, JavaScript retrieves the value stored in both the side1 and side2
variables, performs the multiplication, and then stores the result in the area
variable.

Don’t think of the assignment as a mathematical equation. You can have an
assignment statement that looks like this:

counter = counter + 1;

As a mathematical equation, this is impossible — you can’t have a value equal
to itself plus 1. What’s happening here is that the interpreter adds 1 to the value
stored in the counter variable and then stores the result back into the counter
variable memory location.

JavaScript also provides the incrementor operator, ++. This adds 1 to the variable
without all the extra text: counter++;.

Besides the math operators, JavaScript also supports logical Boolean operators, as
shown in Table 1-2.

TABLE 1-2	 JavaScript Boolean Operators
Operator Description

&& logical AND

|| logical OR

! logical NOT

In
tr

od
uc

in
g

Ja
va

Sc
ri

pt

CHAPTER 1 Introducing JavaScript 209

Boolean operators are most commonly used in condition tests in control state-
ments, as described a little later in the “Controlling Program Flow” section of this
chapter.

There is also a string operator that you can use in JavaScript. Although it may
seem odd, JavaScript supports the plus sign when working with string values:

var value1 = "test";

var value2 = "ing";

var value3 = value1 + value2;

The resulting value3 variable will contain the string value testing. The plus sign
concatenates the two separate string values into a single string value. This comes
in handy when you want to display a string value stored in a variable along with
some text, like this:

var display = "Welcome, " + name + " to the game!";

Notice the spaces at the end of the first string value, and at the beginning of the
second string value. These are necessary because the concatenation doesn’t add
any spaces itself when it joins the variable value to the other strings.

Controlling Program Flow
By default, JavaScript processes statements in a linear fashion, operating on one
statement, and then moving on to the next statement in the program code. You
may want to alter the behavior of the code based on some type of conditions,
events, or variable values.

You can do that using flow control statements. Flow control statements alter the
flow of the program to make the JavaScript interpreter jump over code to another
statement, based on some type of condition. The following sections discuss two
popular methods of flow control in JavaScript programming.

Conditional statements
Life is full of conditions. How often do you get up in the morning and say “If it’s
raining today, I’d better bring my umbrella”? Your actions for the day depend on
a specific condition (the weather). JavaScript programs provide the same type of
condition checks for your code. These are called conditional statements. They pro-
cess blocks of code depending on a condition that the program can test for.

210 BOOK 3 JavaScript

There are a few different types of conditional statements:

 » if statements

 » else statements

 » switch statements

Each has its own set of nuances and formats that you’ll need to become familiar
with. This section walks through each type of conditional statement.

if statements
The if...else statement checks a condition that you specify and runs specific
code if that condition occurs or skips the code if the condition doesn’t occur.
Here’s the basic format for an if statement:

if (condition) {

 code to process

}

The JavaScript interpreter evaluates the condition between the parentheses. If
the condition evaluates to a true value, the interpreter runs the code inside the
braces. If the condition evaluates to a false value, the interpreter skips all the
code between the braces. Let’s take a look at an example of this:

if (age > 17) {

 alert("You are allowed to play the game");

}

The condition in this if statement evaluates the value currently stored in the age
variable. If the value is greater than 17, the interpreter runs the alert() function.
If the value is not greater than 17, the interpreter skips the alert() function.

The greater-than symbol used in the condition is another type of JavaScript oper-
ator, called a comparison operator. Comparison operators compare two values to
test their equality. Table 1-3 shows the JavaScript comparison operators to use in
conditions.

The equal-to operator (==) is possibly the most forgotten operator in JavaScript,
even for pros. If you want to check if a variable is equal to a specific value, you
must use the equal-to operator:

if (counter == 20) {

In
tr

od
uc

in
g

Ja
va

Sc
ri

pt

CHAPTER 1 Introducing JavaScript 211

The equal-to operator compares the two values, and the interpreter processes the
code in the code block only if they’re equal. In coding, programmers often get in
a hurry and write the following:

if (counter = 20) {

This uses the assignment operator (=) instead of the comparison operator (==).
The assignment operator assigns the value of 20 to the counter variable and then
returns a true value if the assignment was successful (which it usually is). This is
not the same thing as the comparison operator, and it’ll produce faulty results in
your programs!

Most of the comparison operators are fairly self-explanatory. The ternary opera-
tor is somewhat different. It provides a shortcut way of combining an if...else
statement and an assignment statement:

var display = (age > 21) ? "Too old":"Young enough";

The ternary operator performs the condition on the left side of the question mark.
If the condition evaluates to a true value, it assigns the first value to the vari-
able. If the condition evaluates to a false value, it assigns the second value to the
variable.

TABLE 1-3	 The JavaScript Comparison Operators
Operator Description

== Equal to

=== Equal to and the same data type

!= Not equal to

!== Not equal to the value or the type

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

? Ternary operator

212 BOOK 3 JavaScript

else statements
With the if statement, if the condition is not met, the interpreter just skips the
code you specify in the code block. The else statement allows you to specify code
to run if the condition evaluates to a false value. That looks like this:

if (age < 18) {

 display = "Sorry, you are not old enough to play";";

 status = "failed";

} else {

 display = "You may begin the game";

 status = "ok";

}

Now there are two separate code blocks — one associated with the if statement
and another associated with the else statement. The two are linked. If the condi-
tion evaluates to a true value, the JavaScript interpreter runs the code in the if
statement code block. If the condition evaluates to a false value, the JavaScript
interpreter runs the code contained in the else statement code block. The inter-
preter runs the code in one block or the other. At no time will the interpreter run
the code in both code blocks.

More often than not, you’ll find yourself needing to test a variable for a range
of values. Instead of having to write multiple if...else statements, JavaScript
allows you to string them together into one long statement by using the else if
statement. The else if statement strings together multiple if and else state-
ments so that they become one long chain of condition tests:

if (age < 10) {

 display = "You are very young";

} else if (age < 20) {

 display = "You are between 10 and 19";

} else if (age < 30) {

 display = "You are between 20 and 29";

} else {

 display = "You are 30 or older";

}

When stringing together multiple if and else statements, the interpreter goes
through the list in order from the first condition test to the last condition test.
When the first condition evaluates to a true value, the interpreter runs the code in
the code block and exits the statements.

In
tr

od
uc

in
g

Ja
va

Sc
ri

pt

CHAPTER 1 Introducing JavaScript 213

switch statements
Using the else if statement provides an easy way to check for a value within a
range, but it’s still somewhat clunky to code. JavaScript makes that test easier for
us by providing the switch statement.

The switch statement performs a similar function to the else if statement, but
using a cleaner format:

switch (expression) {

 case match1:

 statements

 break;

 case match2:

 statements

 break;

 default:

 statements

}

With the switch statement, the JavaScript interpreter evaluates the expression
specified and then compares the result with one or more case statements. Each
case statement specifies a different possible result of the expression. If the result
matches, the interpreter runs the statements contained in that section. The break
statement is used to force the interpreter to then skip over the remaining case
statement sections to the end of the switch code block. If none of the case results
matches, the interpreter runs the statements under the default statement.

This sounds complicated, but it actually makes your life much easier when coding
to check for variable values. Here’s an example of using a switch statement:

switch (counter) {

 case 0:

 alert("You have four lives left");

 break;

 case 1:

 alert("You have three lives left");

 break;

 case 2:

 alert("You have two lives left");

 break;

 case 3:

 alert("Careful, you only have one life left");

 break;

 case 4:

 alert("Sorry, you are out of lives");

}

214 BOOK 3 JavaScript

The expression to evaluate is the value stored in the counter variable. Depending
on the value, the program displays a different alert message and then breaks out
of the switch statement code block.

Checking for a range of values is a little tricky, but doable with the switch state-
ment. Follow these steps to experiment with using the switch statement in a
JavaScript program:

1. Open your favorite text editor, program editor, or IDE package.

2. Enter the following code:

<!DOCTYPE html>

<html>

<head>

<title>Testing the switch statement</title>

<script>

var age = prompt("How old are you?");

</script>

</head>

<body>

<script>

switch (true) {

 case (age < 18):

 alert("Sorry, you are too young to play");

 break;

 case (age < 50):

 alert("Welcome to the game!");

 break;

 case (age >= 50):

 alert("Sorry, you are too old to play");

}

</script>

</body>

</html>

3. Save the code as switchtest.html in the DocumentRoot folder of your
web server.

That’s c:\xampp\htdocs for XAMPP on Windows or /Applications/XAMPP/
htdocs for XAMPP on Mac macOS.

4. Open the XAMPP Control Panel and start the Apache web server.

In
tr

od
uc

in
g

Ja
va

Sc
ri

pt

CHAPTER 1 Introducing JavaScript 215

5. Open your browser, and enter the following URL:

http://localhost:8080/switchtest.html

You may need to change the TCP port based on your web server.

6. Stop the Apache web server and close the XAMPP Control Panel.

The switchtest.html code has two separate switch elements. The first one is
in the head element of the web page. It uses the JavaScript prompt() function to
prompt the site visitor for an age:

var age = prompt("How old are you?");

It stores the value in the age variable. Figure 1-3 shows what the prompt looks like
using the Microsoft Edge browser.

Notice that the Edge browser provides some additional information in the prompt
dialog box, such as the host that has produced the prompt. This can be helpful to
prevent security issues with unwanted pop-up prompts from dangerous websites.

The second script element retrieves the age variable and uses it in a switch
statement. The odd thing is that the switch statement just has a true value for the
expression. This means the expression will always evaluate to a true condition, so
the individual case statements test the condition.

FIGURE 1-3:
The JavaScript

prompt()
 function as

displayed by the
Microsoft Edge

browser.

216 BOOK 3 JavaScript

The interpreter will run the first case statement that matches the age range.
Figure 1-4 shows the alert() message that displays for entering an age of 15.

Notice, in this example, that the code sets the age variable in one script element
and uses that value in another script element. JavaScript maintains variables and
their values between multiple script elements contained in the same web page.

Loops
Often, when you’re writing programs, you’ll run into situations where you need to
run the same block of code multiple times, called a loop. Usually, in a loop, one or
more variables changes values in each iteration of the loop. The loop exits when
the variable reaches a specific value.

Loops that contain variables that never change values are called endless loops. If
your program gets stuck in an endless loop, the browser will never show the web
page as loading completely.

JavaScript supports a few different types of loop statements, as shown in Table 1-4.

Each of these loop types is useful and comes in handy in different environments.
The following sections walk through how to use each type of JavaScript loop
statement.

FIGURE 1-4:
The JavaScript

alert() function
response as

displayed by the
Microsoft Edge

browser.

In
tr

od
uc

in
g

Ja
va

Sc
ri

pt

CHAPTER 1 Introducing JavaScript 217

The do...while loop
The do...while loop executes a block of statements and then at the end of the
block tests a condition to determine if the block should be repeated:

var side1 = 1;

var side2 = 5;

do {

 area = side1 * side2;

 alert(side1 + "x" + side2 + " = " + area);
side1 = side1 + 1;
} while (side1 <= 10)

The do...while loop ensures that the code in the loop executes at least once
before the condition is evaluated.

The while loop
The while loop is the opposite of the do...while loop:

var side1 = 1;

var side2 = 5;

while (side1 <= 10) {

area = side1 * side2;

 alert(side1 + "x" + side2 + " = " + area);
side1 = side1 + 1;
}

Because the condition is checked before the interpreter executes the code in the
code block, it’s possible that the condition will fail before the first loop and none
of the code will be executed.

TABLE 1-4	 JavaScript Looping Statements
Statement Description

do..,while Executes a block of statements and checks a condition at the end

for Checks a condition, executes a block of statements, and then alters a specified variable

for...in Executes a block of statements for each element contained in an array

while Checks a condition and then executes a block of statements

218 BOOK 3 JavaScript

The for statement
The for statement is similar to the while loop, but it provides three features in
one statement:

 » It sets the initial values of one or more variables going into the loop.

 » It defines the condition to evaluate before each iteration.

 » It defines how a variable should be changed at the end of each iteration.

The basic format of the for statement is:

for(statement1; condition; statement2) {

 statements

}

The statement1 statement is executed before the loop starts. The interpreter then
evaluates the condition to determine whether to execute the statements in the
code block. At the end of executing the statements in the code block, the inter-
preter executes the statement2 statement.

This provides a compact way of creating loops for your programs. Try the follow-
ing steps to test using the for statement to calculate the factorial of a value:

1. Open your favorite text editor, program editor, or IDE package.

2. Enter the following code:

<!DOCTYPE html>

<html>

<head>

<title>Calculating the Factorial</title>

<script>

var number = prompt("Please enter a number:");

</script>

</head>

<body>

<script>

var factorial = 1;

for (counter = 1; counter <= number; counter++) {
 factorial = factorial * counter;

}

In
tr

od
uc

in
g

Ja
va

Sc
ri

pt

CHAPTER 1 Introducing JavaScript 219

var output = "The factorial of " + number + " is " + factorial;
alert(output);

</script>

</body>

</html>

3. Save the file as factorial.html in the DocumentRoot folder for your web
server.

4. Start the XAMPP Control panel and start the Apache web server.

5. Open your browser and enter the following URL:

http://localhost:8080/factorial.html

You may need to change the TCP port to match your web server setup.

6. Stop the Apache web server and close the XAMPP Control Panel.

The factorial.html code uses the prompt() function to prompt for a value at the
start of the program. This is shown in Figure 1-5.

You find the factorial of a number by multiplying the series of numbers up to and
including the number you want. So the factorial of 5 is 1 × 2 × 3 × 4 × 5, which is
120. To calculate the factorial, you set up a for statement to iterate through the
numbers starting at 1, up to the number entered into the prompt dialog box:

for(counter = 1; counter <= number, counter++)

FIGURE 1-5:
Prompting for the
factorial number.

220 BOOK 3 JavaScript

The counter variable keeps track of how many iterations of the for loop have
taken place. After each iteration, you add 1 to the counter variable by using the
incrementor operator (++). At the start of each new iteration, the interpreter
checks the condition statement, which evaluates whether the counter variable
value is less than or equal to the number value. If this is true, the interpreter con-
tinues with the next loop iteration.

The for...in statement
The for...in statement comes in handy when you need to iterate through the
data elements stored in an array variable. Often, you don’t know how many values
are stored in the array, so you can’t just use a for loop to loop a specific number
of times.

The for...in statement allows you to extract individual data values from the
array and then stop when the array runs out of data elements. That code looks
like this:

var scores = [100, 110, 105];

for (index in scores) {

 output = "One bowling score was " + scores[index];
 alert(output);

}

The first time the for...in statement runs, the index variable contains the value
of 0, or the first index number from the array. For the next iteration, the index
variable contains the value of 1, and for the final iteration, it contains the value 2.
You can then use that index value to reference the individual data values stored
in the array.

Working with Functions
As you write more complex JavaScript code, you’ll find yourself reusing parts of
code that perform specific tasks. Sometimes it’s something simple, such as dis-
playing a prompt and retrieving a response from the site visitor. Other times it’s a
complicated calculation that’s used multiple times in your program.

In each of these situations, writing the same blocks of code over and over again
can get tiresome. It would be nice to just write the block of code once, and then be
able to refer to that block of code in the other places it’s needed.

JavaScript provides a feature that lets you do just that. Functions are blocks of code
to which you assign names; then you can reuse them anywhere in your code. Any

In
tr

od
uc

in
g

Ja
va

Sc
ri

pt

CHAPTER 1 Introducing JavaScript 221

time you need to use the block of code in your program, you simply use the name
you assigned to the function. This is referred to as calling the function. The follow-
ing sections describe how to create and use functions in your JavaScript code.

Creating a function
To create a function in JavaScript you use the function statement:

function name(parameter1, parameter2, ...) {

 function code

 return value;

}

The name that you assign to the function must be unique within your program
code. The function can take parameters that the calling program passes to it. You
can use the parameter variables within the function code.

Functions are intended to be self-contained. The only data they work with are the
values passed as the function parameters. This allows you to use the function in
any program that requires that function task. Because of that, you can’t directly
access variables defined in the main program from inside the function code.

At the end of the function, you can opt to have it return a single value back to
the calling program by including the return statement. If no data needs to be
returned back to the calling program, you can leave out the return statement.

Here’s an example of writing a function to calculate the factorial value of a num-
ber passed to the function:

function factorial(number) {

 var factorial = 1;

 for(counter = 1; counter <= number; counter++) {
 fact = fact * counter;

 }

 return fact;

}

The factorial() function requires a single parameter, assigned to the number
variable. Inside the factorial() function the code uses the number variable to
calculate the factorial. When the for loop completes, the answer is stored in the
fact variable. The return statement returns the value of the fact variable back
to the calling program.

222 BOOK 3 JavaScript

Using a function
To call a function from inside the JavaScript program, you just reference it by
name, and include any parameters you need to pass. If the function returns a
value, you can assign the output of the function to a variable:

var result = factorial(5);

The return value from the factorial() function is assigned to the result vari-
able. You can use the factorial() function as many times as necessary in your
program code.

Before you can use the function though, you must ensure that it gets defined.
Because of this, it’s common to define JavaScript functions at the start of the head
element section of the web page.

CHAPTER 2 Advanced JavaScript Coding 223

Advanced JavaScript
Coding

In the previous chapter, I explain the basics of how to incorporate JavaScript code
into a web page. If you read that chapter, you ran a couple of simple JavaScript
programs, using the prompt() function for input and the alert() function for

output. That was a great start, but the whole point of using JavaScript is to dynam-
ically alter the data and/or appearance of web pages. This chapter explains how
JavaScript interfaces with your web pages and shows you how to write JavaScript
code to dynamically add, delete, or change content in your website.

Understanding the Document
Object Model

In order for JavaScript to have access to the elements in your web page, it needs to
know how to find them. The Document Object Model (DOM) provides a standard
way of accessing objects placed within a web page. It creates a tree structure that
contains every element, attribute, content text, and even CSS3 style contained
within the web page. It treats each of these items as objects that the browser (or
your program code) can manipulate. Finding any of these items is just a matter of
walking through the tree with your JavaScript code.

Chapter 2

IN THIS CHAPTER

 » Getting acquainted with the
Document Object Model

 » Working with the Document Object
Model

 » Reading data from your web page

 » Writing to your web page

224 BOOK 3 JavaScript

The browser defines every web page as a set of DOM objects that the web page
contains. Just as your family has a family tree that you can trace back to find
relatives, every web page has its own DOM tree of the objects contained within
the web page. With JavaScript, you can peruse through the DOM tree and make
modifications along the way.

The Document Object Model tree
Every family tree has a head, and for the DOM tree, the head is the html element
that starts out the web page. Just as parents have children, the html object in the
DOM tree has two child objects: the head object and the body object, shown in
Figure 2-1.

The head and body elements in the HTML code are called child objects of the html
object in the DOM tree. Because it comes first in the code, the head object is called
the “first child object,” while the body object is the “last child object.” This ter-
minology is important when working with DOM objects.

As you continue down the DOM tree, the browser places each object in the web
page under its parent object. Let’s take a look at a simple example of this prin-
ciple. I’ll use this sample web page for the demo:

<!DOCTYPE html>

<html>

<head>

<title>Sample DOM web page</title>

</head>

<body>

<h1>This is the heading of the web page</h1>

<p>This is sample text</p>

</body>

</html>

FIGURE 2-1:
The html object
and its two child

objects.

A
dv

an
ce

d
Ja

va
Sc

ri
pt

Co

di
ng

CHAPTER 2 Advanced JavaScript Coding 225

From this sample HTML5 code, the browser creates DOM objects from each ele-
ment, and places them in a DOM tree layout it keeps in memory, as shown in
Figure 2-2.

In the example shown in Figure 2-2, the html object contains the two child
objects — head and body — but now each of those objects has child objects as
well. The head object contains just one child object, the title object. The title
object also has one child object, which may seem odd at first glance, because the
title object doesn’t contain any additional objects.

One of the more confusing features of the DOM tree is how it handles text inside
elements. It treats the text inside an element as a separate DOM object that has its
own features. So, in this example, the title object contains a single child object,
which is the text object for the title text.

The body object has two child objects. The h1 object is the first child of the body
object, and it, too, contains a text child object. The p object is the last child of the
body object, and it has a text object in it as well.

FIGURE 2-2:
The simple
DOM tree.

226 BOOK 3 JavaScript

This simple example shows the basics of DOM. Working out the DOM tree for a
large web page with lots of different types of elements can be complicated, but it
uses the same principle. Fortunately, JavaScript has some features that help make
things a little easier for you.

JavaScript and the Document
Object Model
So far, you’ve seen that the browser breaks every web page down into a DOM
tree of objects. The browser uses the DOM tree to keep track of all the HTML5
elements, their content, and the styles that appear on the web page. However,
because JavaScript programs run in the browser (remember the whole client-
side programming thing?), they have full access to the DOM tree created by the
browser.

That means your JavaScript programs can interact directly with the DOM tree that
the browser follows to create the web page. And not only that, but your JavaScript
programs can add, change, and even remove objects in the DOM tree. As your
JavaScript program modifies the DOM tree, the browser automatically updates the
web page window with the new information. How cool is that? This is the key to
client-side dynamic web programming.

Just like the DOM tree, JavaScript treats each element contained in a web page as
an object. In JavaScript, objects have two features:

 » Properties: Properties define information about the object.

 » Methods: Methods are actions to take with the objects.

JavaScript assigns a special object named document to represent the entire web
page DOM tree. You can reference many of the DOM objects directly from the doc-
ument object, as well as add or remove objects. Table 2-1 lists some of the docu-
ment properties available in JavaScript.

To reference a document property, you use the format document.property, like
this:

var myurl = document.URL;

The same applies to using the document methods. Table 2-2 shows a list of the
more popular document methods used in JavaScript.

A
dv

an
ce

d
Ja

va
Sc

ri
pt

Co

di
ng

CHAPTER 2 Advanced JavaScript Coding 227

TABLE 2-1	 JavaScript Document Properties
Property Description

activeElement Returns the element that currently has the focus of the web page window

anchors Returns a list of all the anchor elements on the web page

body Sets or retrieves the body element of the web page

cookie Returns all cookie names and values set in the web page

characterSet Returns the character set defined for the web page

documentElement Returns the DOM object for the html element of the web page

documentMode Returns the mode used by the browser to display the web page

domain Returns the domain name of the server used to send the document

embeds Returns a list of all the embed elements in the web page

forms Returns a list of all the form elements in the web page

head Returns the head element for the web page

images Returns a list of all the img elements in the web page

lastModified Returns the time and date the web page was last modified

links Returns a list of all the anchor and area elements in the web page

title Sets or retrieves the title of the web page

URL Returns the full URL for the web page

TABLE 2-2	 JavaScript Document Methods
Method Description

createElement() Adds a new element object

createTextNode() Adds a new text object

getElementbyId(id) Returns an element object with the specified id value

getElementsByClass
Name(class)

Returns a list of elements with the specified class name

getElementsByTagname(tag) Returns a list of elements of the specified element type

hasFocus() Returns a true value if the web page has the window focus

write(text) Sends the specified text to the web page

writeln(text) Sends the specified text to the web page, followed by a new
line character

228 BOOK 3 JavaScript

Let’s run a quick test to see how this works. Follow these steps to test using the
write() method for a web page document:

1. Open your favorite text editor, program editor, or integrated
 development environment (IDE) package.

2. Enter the following code:

<!DOCTYPE html>

<html>

<head>

<title>DOM Test</title>

<script>

document.write("<h1>This is a test of the DOM</h1>");

</script>

</head>

<body>

</body>

</html>

3. Save the file as domtest.html in the DocumentRoot folder for your web
server.

If you’re using XAMPP in Windows, that’s the c:\xampp\htdocs folder; for
XAMPP in macOS, it’s /Applications/XAMPP/htdocs.

4. Open the XAMPP Control Panel and then start the Apache Web server.

5. Open your browser and enter the following URL:

http://localhost:8080/domtest.html

You may need to change the TCP port in the URL to match your Apache web
server.

6. Close the browser.

When you examine the code in the domtest.html file, you’ll notice that there’s
nothing in the body element, so you may not expect to see anything on the result-
ing web page. However, when you run the program, you should see the output
shown in Figure 2-3.

A
dv

an
ce

d
Ja

va
Sc

ri
pt

Co

di
ng

CHAPTER 2 Advanced JavaScript Coding 229

The document.write() function runs the write() method from the document
object to dynamically place the h1 element in the web page for us!

The write() method is an easy way to dynamically place text in the web page, but
it can be somewhat dangerous to use. The write() method overwrites everything
that was originally in the web page. In this example, I ran it from the head element,
so it placed the output at the top of the web page, before any elements defined in
the body element. However, if you use the write() function from within the body
element, it’ll remove any elements that were previously on the web page. I’ll show
you some better methods for doing this later in this chapter.

Besides the document properties and methods, JavaScript also has properties and
methods that apply to each element object in the document. The following sec-
tions detail how to use those properties and methods.

JavaScript DOM object properties
Now that you have access to the objects contained in the web page, you can use
JavaScript to manipulate them. Each DOM object contains one or more properties
that define the actual object. There are lots of object properties JavaScript uses
with objects. Table 2-3 shows a list of the more popular JavaScript DOM object
properties you’ll use.

FIGURE 2-3:
The output from

the domtest.
html program.

230 BOOK 3 JavaScript

Besides these standard properties, each attribute that you assign to an HTML5
element and each CSS style property that you apply to an element becomes an
object property of the DOM object as well.

Follow these steps to experiment with accessing the DOM object properties for our
sample web page:

1. Open your favorite text editor, program editor, or IDE package.

2. Enter the following code:

TABLE 2-3	 JavaScript DOM Object Properties
Property Description

attributes Returns a list of the object’s attributes

childElementCount Returns a list of the number of child objects the object has

childNodes Returns a list of the object’s child nodes, including text and comments

children Returns a list of only the object’s child element object nodes

classList Returns a list of the class name attributes of an object

className Sets or returns the value of a class attribute of an object

firstChild Returns the first child object for the object

id Sets or returns the id value of the object

innerHTML Sets or returns the HTML content of the object

lastChild Returns the last child object for the object

nodeName Returns the name of the object

nodeType Returns the element type of the object

nodeValue Sets or returns the value for the object

nextSibling Returns the next object at the same level in the tree as the object

parentNode Returns the parent object for the object

previousSibling Returns the previous object at the same level in the tree as the object

style Sets or returns the value of the style property for the object

A
dv

an
ce

d
Ja

va
Sc

ri
pt

Co

di
ng

CHAPTER 2 Advanced JavaScript Coding 231

<!DOCTYPE html>

<html>

<head>

<title>Testing DOM properties</title>

</head>

<body>

<body>

<h1>This is the heading of the web page</h1>

<p>This is sample text</p>

<button type="button" onclick="changeme('red')">Change background to

red</button>

<button type="button" onclick="changeme('white')">Change background to

white</button>

<script>

function changeme(color) {

 document.body.style.backgroundColor = color;

}

</script>

</body>

</html>

3. Save the file as domproperties.html in the DocumentRoot folder for your
web server.

4. Open the XAMPP Control Panel and start the Apache web server if it’s not
already running.

5. Open your browser and enter the following URL:

http://localhost:8080/domproperties.html

You may need to change the TCP port to match your Apache web server.

6. Click the buttons to change the background color of the web page.

7. Close the browser window.

The domproperties.html code uses two buttons to trigger the changeme() func-
tion. (I talk more about how to do that in Book 3, Chapter 4.) The changeme()
function uses the document.body object to reference the body element in the web
page. It then uses the style object property to reference the CSS3 styles applied
to the body element.

You may be wondering why the backgroundColor style property isn’t
background-color, because that’s how CSS3 defines that property. Unfortunately,
the DOM standard doesn’t like using dashes in property names. So, instead, wher-
ever there’s a dash in a CSS3 property name (such as in background-color), it
removes the dash and capitalizes the first letter of the next word. That’s how we

232 BOOK 3 JavaScript

get backgroundColor as the DOM property to change the background-color CSS3
property on the web page.

JavaScript DOM object methods
Besides properties, JavaScript objects also contain methods. The methods provide
actions to interact with the object. You’ve already seen a demonstration of using
the write() method of a DOM object in JavaScript. There are plenty more object
methods for you to use in your JavaScript programs to help you retrieve informa-
tion about the DOM objects, modify existing DOM objects, or even add new DOM
objects to your web page. Table 2-4 shows some of the more popular DOM object
methods that you’ll use.

TABLE 2-4	 JavaScript DOM Object Methods
Method Description

appendChild(object) Adds a new child object to an existing object

blur() Removes the page focus from an object

click() Simulates a mouse click on the object

cloneNode Duplicates an object in the DOM

contains(object) Returns a true value if the object contains the specified object

focus() Places the window focus on the object

getAttribute(attr) Returns the value for the specified object attribute

getElementsByClassName(class) Returns a list of objects with the specified class name

getElementsByTagName(tag) Returns a list of objects with the specified tag name

hasAttribute(attr) Returns true if the object contains the specified attribute

hasAttributes() Returns true if the object contains any attributes

hasChildNodes() Returns true of the object contains any child objects

insertBefore(object) Inserts the specified object before the object

removeAttribute(attr) Removes the specified attribute from the object

removeChild(object) Removes the specified child object from the parent object

replaceChild(object) Replaces the child object with the specified object

setAttribute(attr) Sets the specified attribute of the object to the specified value

toString() Converts the object to a string value

A
dv

an
ce

d
Ja

va
Sc

ri
pt

Co

di
ng

CHAPTER 2 Advanced JavaScript Coding 233

As you can see, there are quite a few different methods available for you to use
when you reference a specific element in the web page. However, part of the prob-
lem with using JavaScript to dynamically change elements is finding them in the
first place. The next section covers how to do that.

Finding Your Elements
As your web pages become more complicated, they’ll contain dozens, hun-
dreds, and possibly even thousands of different elements. Trying to find a
specific element within that mess so you can dynamically change it can be a
challenge.

There are basically two different ways to find a specific element buried within the
HTML5 code in your web page:

 » Using a unique feature assigned to the element to jump directly to it

 » Walking the DOM tree to navigate your way down to the element's object
from a specific point in the DOM tree

Both methods have their own pros and cons for using them. Obviously, if you
can use a unique feature of an element (such as an id attribute) to reference a
specific element that’s the easiest way to go. However, that’s not always pos-
sible, so it helps to know how to get there the hard way. The following sections
describe how to use both methods for referencing element objects within the
DOM tree.

Getting to the point
The easiest way to uniquely identify an element in your web page is to assign it
a unique id attribute value. When you assign the id attribute to elements, you
can then reference them in your JavaScript code by using the getElementById()
method.

The getElementById() method returns a pointer to the DOM object with the
specified id value. When you have the pointer to the element object, you can use
any of the DOM object properties or methods to work with the element.

234 BOOK 3 JavaScript

Follow these steps to test this out:

1. Open your favorite text editor, program editor, or IDE package.

2. Enter the following code:

<!DOCTYPE html>

<html>

<head>

<title>Finding an Element</title>

<script>

function changeit() {

 var answer = prompt("Enter some new text");

 var spot = document.getElementById("here");

 spot.innerHTML = answer;

}

</script>

</head>

<body>

<h1>Trying to find an element</h1>

<button type="button" onclick="changeit()">

Click to change

</button>

<p id="here">This is the original text</p>

</body>

</html>

3. Save the file as findtest.html in the DocumentRoot folder for your web
server.

4. Start the Apache web server if it’s not currently running.

5. Open your browser and enter the following URL:

http://localhost:8080/findtest.html

6. Note the text that appears in the web page below the button.

7. Click the button and then enter some new text at the prompt dialog box.

8. Click OK in the dialog box.

9. Note the text that now appears on the web page.

10. Close the browser window when you’re done playing.

The findtest.html code defines the changeit() JavaScript function in the head
section. The changeit() function uses a prompt() function to retrieve some text
from the site visitor and then attempts to replace the text in the p DOM object with
the new text.

A
dv

an
ce

d
Ja

va
Sc

ri
pt

Co

di
ng

CHAPTER 2 Advanced JavaScript Coding 235

To do that, it uses the getElementById() document method to create a pointer
to the p object in the web page, identified by the id attribute value of here. After
it retrieves the pointer to the p object, it uses the innerHTML object property to
change the text that appears inside the p object.

When you run the program, you should see the heading, the same text, and a but-
ton. When you click the button, a prompt dialog box should appear, prompting
you to enter some text (see Figure 2-4).

Type some text and then click OK. The browser will automatically change the con-
tent of the p element to show the text you entered into the dialog box!

You can continue doing that for as long as you like. Each time you enter new text,
it’ll appear in the web page automatically!

Walking the tree
Finding the DOM object for a specific HTML5 element in the DOM tree by using its
id attribute is the preferred method, but that’s not always available. Sometimes
you need to find an element within the document to use as a base, and then use
the element properties to find child and sibling objects:

 » Use the firstChild property to find the first element in a group.

 » Use the nextSibling property to find the related elements within the group.

FIGURE 2-4:
The initial page

and dialog
box for the

findtest.html
web page.

236 BOOK 3 JavaScript

You can then alternate between firstChild, lastChild, nextSibling, or
previousSibling properties to work your way down to where you want to be in
the DOM tree.

That can be tedious work, especially for large web pages. You need to be aware of
exactly how all the elements appear and fit together in the web page.

Follow these steps to try this method out:

1. Open your favorite text editor, program editor, or IDE package.

2. Enter the following code:

<!DOCTYPE html>

<html>

<head>

<title>Walking Test</title>

<script>

function changeit() {

 var spot = document.getElementById("mylist");

 var item1 = spot.firstChild;

 var item2 = item1.nextSibling;

 var item3 = item2.nextSibling;

 var item4 = item3.nextSibling;

 item1.innerHTML = "Cake";

 item2.innerHTML = "Ice Cream";

 item3.innerHTML = "Cookies";

 item4.innerHTML = "Fudge";

}

</script>

</head>

<body>

<h1>Changing elements by walking</h1>

<h2>Here's a list of food to buy</h2>

<ul id="mylist">CarrotsBrussel SproutsEggplant

Tofu

<button type="button" onclick="changeit()">

Change the list

</button>

</body>

</html>

3. Save the file as walkingtest.html in the DocumentRoot folder for your
Apache web server.

4. Start the Apache web server if it’s not already running.

A
dv

an
ce

d
Ja

va
Sc

ri
pt

Co

di
ng

CHAPTER 2 Advanced JavaScript Coding 237

5. Open your browser and enter the following URL:

http://localhost:8080/walkingtest.html

6. Examine the items in the list.

7. Click the button.

8. Note the new items in the list.

9. Close the browser window when you’re done.

The walkingtest.html code defines an id attribute for the unordered list ele-
ment, but each of the items within the list isn’t uniquely identified. In order to
reference them, the code uses the firstChild and nextSibling object property
values to walk its way through the list of items. When you click the button, all the
items in the list are replaced, as shown in Figure 2-5.

The code finds the ul object by using the id attribute value of the ul element. It
assigns that object to the variable spot. Then the code can reference the individual
list items based on that location in the DOM tree. The first child of the ul object
is the first li object for the list. The firstChild property returns a pointer to
that object, which the code stores in the item1 variable. Next, the code uses the
nextSibling property of the item1 variable, which returns a pointer to the next
item in the list and is stored in the item2 variable. That continues on, using the
nextSibling property for each item to find the next item in the list. After the code
retrieves pointers to all the list items, it uses the innerHTML property to change
the text for each item.

FIGURE 2-5:
The

walkingtest.
html results.

238 BOOK 3 JavaScript

Be careful how you create the list in the code. If you place each list item on a sep-
arate line, the code won't work! That’s because the browser assigns any white
space between elements as a text object in the DOM. So the nextSibling property
will point to the new line character text object and not the next li object in the list!
It’s important to remember that when working with the positional properties of
objects.

Working with Document Object
Model Form Data

When you use HTML5 forms in your web pages, you usually incorporate quite a
few different elements — text boxes, text areas, check boxes, and radio buttons.
Your JavaScript code can use the DOM tree objects to manipulate all these ele-
ments. The following sections show you how to use the DOM tree to work with
different types of form elements.

Text boxes
Handling data in a text input element is a little different from what I did with the
p element. Because the input element is a one-sided tag, there’s no innerHTML
property to store the text that’s inside the text box.

Instead, you need to use the value attribute of the object to read any text that may
already be in the text box (whether placed there by the value attribute or typed by
the site visitor). To do that, you use the value object property:

var textbox = document.getElementById("test");

var data = textbox.value;

You can also use the value property to write data to the text box. That code looks
like this:

var textbox = document.getElementById("test");

var answer = prompt("Enter text to change");

textbox.value = answer;

This provides for an easy way to create a message area on your web page for dis-
playing short messages, such as status messages. Just place a textbox input ele-
ment near the bottom of the web page, and change the value property of it with
any message you need to display.

A
dv

an
ce

d
Ja

va
Sc

ri
pt

Co

di
ng

CHAPTER 2 Advanced JavaScript Coding 239

There are also a few other DOM object properties associated with textbox objects
that can come in handy. Table 2-5 shows the DOM textbox properties available.

With these few properties, you have full control to dynamically modify any text
box that appears on the web page.

Text areas
The textarea DOM object works similar to the textbox object. Instead of the
innerHTML property, you use the value attribute to retrieve any text from the text
area or place any new text into the text area.

TABLE 2-5	 The textbox DOM Properties
Property Description

autocomplete Sets or retrieves the value of the autocomplete attribute

autofocus Sets or retrieves whether the text box gets the window focus when the web page loads

defaultValue Sets or retrieves the default value assigned to the text box

disabled Sets or retrieves whether the text box is disabled in the form

form Retrieves the parent form the text box belongs to

list Retrieves the data list associated with the text box

maxLength Sets or retrieves the maximum length of the text box

name Sets or retrieves the name attribute for the text box

pattern Sets or retrieves the pattern attribute for the text box

placeholder Sets or retrieves the placeholder attribute for the text box

readOnly Sets or retrieves whether the text box is read only

required Sets or retrieves whether the text box is a required field in the form

size Sets or retrieves the value of the size attribute for the text box

type Retrieves the type of element the text box is

value Sets or retrieves the value attribute for the text box

240 BOOK 3 JavaScript

There are a few other properties that are unique to the textarea object:

 » cols: Sets or retrieves the number of columns assigned to the text area

 » rows: Sets or retrieves the number of rows assigned to the text area

 » wrap: Sets or retrieves whether text can auto-wrap within the text area

As you can tell, you can dynamically change the size of the text area in a web page
using JavaScript and the DOM object properties. That can create quite an effect as
your site visitor is filling out the form.

Check boxes
The checkbox object is another oddity in the DOM. A check box in a form provides
for a yes/no type of answer — either the visitor checks the check box or the box
is unchecked. You can test for that condition using the DOM checked property:

var pizza = document.getElementById("pizzabox");

if (pizza.checked) {

 alert("your pizza will be delivered shortly");

}

You can also set whether the check box is checked by assigning the property a
true or false value:

pizza.checked = true;

Table 2-6 shows all the DOM object properties that are supported when using
check boxes.

TABLE 2-6	 The checkbox DOM Properties
Property Description

autofocus Sets or retrieves whether the check box gets the focus when the web page loads

checked Sets or retrieves the state of the check box

defaultChecked Retrieves the default state of the check box

defaultValue Retrieves the default value assigned to the check box

disabled Sets or retrieves whether the check box is disabled

A
dv

an
ce

d
Ja

va
Sc

ri
pt

Co

di
ng

CHAPTER 2 Advanced JavaScript Coding 241

That gives you full control over how the check boxes behave in your web page.

Radio buttons
Working with radio buttons is always a complicated matter. All the radio but-
tons in the same group use the same name property, so the browser can handle
them as a group. Remember, only one radio button in the group can be selected at
any time.

Handling data from a radio button requires using the checked and value object
properties, just like the checkbox object. Because all the radio buttons use the
same name, the value attribute is crucial in determining if you’re working with
the correct radio button in the form.

Property Description

form Retrieves the parent form the check box belongs to

intermediate Sets or retrieves the intermediate state of the check box

name Sets or retrieves the name assigned to the check box element

required Sets retrieves whether the check box must be checked before submitting the form

type Retrieves the type of element the check box is

value Sets or retrieves the value associated with the check box

CHAPTER 3 Using jQuery 243

Using jQuery

As you code dynamic web applications using JavaScript, you’ll find your-
self using the same statements and features over and over again to create
dynamic effects on your web pages. As it turns out, JavaScript developers

around the world use the same statements and features to implement the same
effects on their web pages, too!

Because of that, lots of work has been done by developers in trying to create a
standard JavaScript library of useful functions. Instead of having to write the same
JavaScript statements over and over, you just run a simple function from a pre-
built library. That makes life for the JavaScript programmer much easier!

By far the most common JavaScript library used around the world today is the
jQuery library. The jQuery library was written to simplify five main functions that
JavaScript is commonly used for:

 » Finding content in an HTML5 document

 » Changing content in an HTML5 document

 » Creating animations using CSS

 » Listening for web page events (see Book 3, Chapter 4)

 » Communicating with remote servers (see Book 6, Chapter 3)

Chapter 3

IN THIS CHAPTER

 » Loading the jQuery library

 » Using jQuery in your web pages

 » Finding elements

 » Replacing data

 » Changing styles

 » Adding nodes

 » Using animation

244 BOOK 3 JavaScript

I cover how to use the first three features of jQuery in this chapter. In the next
chapter, I show you how to use jQuery to simplify listening to actions your site
visitors take while on your web pages. Then in Book 6, Chapter 3, I show how to use
jQuery to simplify communicating with PHP programs running on the server from
inside your web pages. But for now, let’s examine how to use the basics of jQuery.

Loading the jQuery Library
Before you can use the jQuery library functions in your web page, you need to load
the library functions. The jQuery library is nothing more than a standard external
JavaScript program that defines lots of handy functions for us. The project freely
provides the JavaScript code library for use in any application, whether it’s com-
mercial or open source.

The main website for the jQuery project is www.jquery.com. From there, you can
find documentation on jQuery, as well as the software download packages. There
are two main versions of jQuery:

 » The latest production version (at the time of this writing, 3.2.1)

 » The latest development version (which isn’t assigned a version number)

For all your website work, you’ll want to use the latest production version of the
jQuery library. The development package is for testing cutting-edge features and
isn’t guaranteed to work correctly at all times in all situations. This could lead to
issues in your dynamic web application.

After you decide to use the latest production version of the jQuery library, there are
actually four different versions of the library that you can use in your application:

 » Uncompressed: The full jQuery library in an uncompressed file

 » Minified: The full jQuery library in a compressed file

 » Slim: Everything except support for animation and Ajax in an uncom-
pressed file

 » Slim minified: Everything except support for animation and Ajax in a
compressed file

For most purposes, you’ll be fine using the minified version of the file. This con-
tains all the jQuery features, but in a compressed file so that it will load faster for
your site visitors.

https://www.jquery.com

U
si

ng
 jQ

ue
ry

CHAPTER 3 Using jQuery 245

You’ve decided to use the minified version of the latest production version of the
jQuery library software (because you trust me completely), but there’s still one
more decision for you to make. Because the jQuery file is a JavaScript library, your
application needs to load it for each web page that contains jQuery code. This can
get somewhat tedious for large applications.

You can either download the jQuery library file to your own server to host, making
it easier for your website visitors to access it along with the rest of your appli-
cation files, or you can point your site visitors’ browsers to download the jQuery
library file from a content delivery network (CDN) server. The following sections
walk through how to use both options.

Option 1: Downloading the library file
to your server
Sometimes it’s better to have your website visitors download all the files neces-
sary for your dynamic web application from one place — your own server. To do
that, you need to have the jQuery library file installed on your web server, in the
DocumentRoot folder so that your site visitors can access it.

Downloading the file from the main jQuery web page and installing it on your web
server is a fairly easy process. Just follow these steps:

1. Open your web browser and go to www.jquery.com/download.

2. Click the link to the compressed production version of jQuery.

At the time of this writing, it’s version 3.2.1.

Your browser downloads the file to the default download folder. It should have
a name something like jquery-3.2.1.min.js. (The numbers will be different
if the version number has changed since this book was written.)

3. Copy the file to the DocumentRoot folder for your web server.

If you’re using XAMPP in Windows, that’s c:\xampp\htdocs; for XAMPP in
macOS, it’s /Applications/XAMPP/htdocs.

To load the jQuery library in your web application, you’ll need to include a
<script> tag in the head element of your web page. The <script> tag should
point to the jQuery library file that you downloaded:

<script src="jquery-3.2.1.min.js"></script>

https://www.jquery.com/download

246 BOOK 3 JavaScript

It’s important that the browser loads the jQuery library file before you use any
jQuery functions in your application. Place the <script> tag near the top of the
head element section, after the <title> tag.

Option 2: Using a content delivery network
One downside to hosting the jQuery library file on your own server is that all your
site visitors will need to download it directly from your server, creating an addi-
tional load on your server. To prevent that, you can point the <script> tag to load
the jQuery library file from a CDN.

A CDN provides content for applications from a common server or group of serv-
ers. Your website visitors can download the jQuery library file from the nearest
CDN to their location, which may speed up the time it takes to load your web page.

The jQuery project runs its own CDN to host the latest jQuery library file and
provides the <script> tag formats required for each of the different library file
options. At the time of this writing, they host that at https://code.jquery.com.
Here’s the current <script> tag to use to load the jQuery library from the jQuery
CDN website:

<script src="https://code.jquery.com/jquery-3.2.1.min.js" integrity="sha256-hwg4

gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>

The integrity and crossorigin attributes are for the Subresource Integrity (SRI)
feature, which helps the browser ensure the downloaded file hasn’t been tam-
pered with. This is a nice feature to add to ensure your site visitors aren’t using a
hacked library file.

Besides the jQuery CDN website, Google and Microsoft also host the jQuery library
files on their own CDN websites. If your site visitors are geographically disbursed
throughout the world, it may be faster for them to download the jQuery library
file from a Google or Microsoft server. The https://code.jquery.com website
provides instructions on how to use the Google and Microsoft CDN websites.

Using jQuery Functions
After you have the jQuery library file downloaded to the site visitor’s browser,
you’re ready to start using jQuery functions in your dynamic web application.

https://code.jquery.com
https://code.jquery.com

U
si

ng
 jQ

ue
ry

CHAPTER 3 Using jQuery 247

All jQuery functions must be embedded in the special jQuery() function. This
signals to the browser that it must use the jQuery library to process the functions
used in the code. The general format for embedding jQuery code into your web
page thus looks like this:

<script>

 jQuery(code);

</script>

Because jQuery is still JavaScript code, you must surround the jQuery code using
the standard script HTML5 element. The actual jQuery code itself must also be
embedded within the jQuery() function.

If things are starting to look complicated, don’t worry — this is a standard format.
After you’ve written a few jQuery programs, you’ll feel right at home using it. That
said, there is a shortcut that can come in handy. Instead of using the jQuery()
function name, you can use the $() shortcut function name.

Finding Elements
One of the main features of jQuery is to help you find HTML5 elements in the
web page to manipulate. In Book 3, Chapter 2, I show you how you need to use
the JavaScript getElementById(), getElementByClassName(), or getElementBy
TagName() functions to find elements in the web page. Needless to say, that gets
fairly complicated when you start working with large web pages.

The jQuery library greatly simplifies this process. It incorporates the same selec-
tor method that CSS uses to apply styles to HTML5 elements. For example, to find
the h1 element in a web page, you just use the jQuery code:

$("h1");

Now that’s easy! If you want to find an element based on an id attribute value, you
use the same format as in CSS:

$("#warning");

Likewise with class names:

$(".warning");

248 BOOK 3 JavaScript

After you’ve found the HTML5 element that you’re looking for, jQuery allows you
to easily apply lots of different functions to modify the element — but more on
that later in this chapter.

Follow these steps to experiment with retrieving text from an HTML5 p element
using your new jQuery skills:

1. Open your favorite text editor, program editor, or integrated develop-
ment environment (IDE) package.

2. Type the following code:

<!DOCTYPE html>

<html>

<head>

<title>Testing jQuery</title>

<script src="jquery-3.2.1.min.js"></script>

</head>

<body>

<h1>This is my heading</h1>

<p>This is some content on my web page</p>

<script>

 var data = $("p").text();

 alert(data);

</script>

</body>

</html>

3. Save the file as jquery1.html in the DocumentRoot folder of your web
server, where you also saved the jQuery library file.

4. Open the XAMPP Control Panel and start the Apache web server.

5. Open your browser and enter the following URL:

http://localhost:8080/jquery1.html

You may need to modify the TCP port used in the URL to match your web
server.

The jQuery code finds the p element in the web page, retrieves the text that it
contains, and then stores it in the data JavaScript variable. You can then use that
as any other JavaScript variable, including displaying it using an alert() func-
tion, as shown in the code. When you run the program, you should see the output
shown in Figure 3-1.

U
si

ng
 jQ

ue
ry

CHAPTER 3 Using jQuery 249

Congratulations on running a successful jQuery program! However, one little issue
remains: I placed the script element that contained the jQuery code at the very end
of the body element section. There’s a reason for that. The jQuery find feature can
only find elements that have already been processed by the browser into the Doc-
ument Object Model (DOM) tree. If you try to run a jQuery find operation before
the browser completes building the DOM tree, it won’t find the elements. That can
be a huge problem with a dynamic web application, but there’s a way around that:
the .ready() function.

The .ready() function causes jQuery to wait until the browser has completely
loaded the DOM tree, and all the HTML5 elements contained in the web page are
available. After that’s done, the .ready() function runs whatever jQuery code you
place inside of it.

To do that, you need to embed your jQuery code into a code block that now looks
like this:

<script>

jQuery(document).ready(function() {

 code

});

</script>

The .ready() function uses an anonymous function that it runs when the browser
fully loads the DOM tree. You just embed your jQuery code inside the anonymous
function, and you’re guaranteed it won’t run until the DOM tree is ready. When
you use this method, you can place your jQuery script element anywhere in the
web page code, including the head element section. That makes it much easier to
spot the embedded jQuery code, instead of having to go hunting all around the
web page code file for it.

FIGURE 3-1:
The output from

the jquery1.
html program.

250 BOOK 3 JavaScript

Using this method, the code that you created earlier would look like this:

<script>

 jQuery(document).ready(function() {

 var data = $("p").text();

 alert(data);

 });

</script>

Now you can place this script element block into the head element of the web page
and it’ll work just fine!

Although you can now place your jQuery code anywhere in the head element sec-
tion, you still need to place the script element that loads the jQuery library before
any jQuery code.

Replacing Data
After you find the HTML5 elements in your web page, the next step is to modify
the content of the web page. Fortunately, jQuery makes that step easier, too. This
section shows how jQuery allows you to change the text, HTML code, and even
attributes of the HTML5 elements contained in your web pages.

Working with text
As shown in the previous code example, adding the .text() function to the jQuery
object retrieves the text contained in the object. You can use the same .text()
function to replace that text. Just place the text you want to use as a parameter to
the .text() function:

$("p").text("This has changed");

Follow these steps to test this out:

1. Open your favorite text editor, program editor, or IDE package.

2. Type the following code:

<!DOCTYPE html>

<html>

<head>

U
si

ng
 jQ

ue
ry

CHAPTER 3 Using jQuery 251

<title>Testing jQuery Replacing Text</title>

<script src="jquery-3.2.1.min.js"></script>

<script>

 jQuery(document).ready(function() {

 $("button").click(function() {

 $("p").text("This has changed!");

 });

 });

</script>

</head>

<body>

<h1>This is my heading</h1>

<p>This is some content on my web page</p>

<button>Test button</button>

</body>

</html>

3. Save the file as jquery2.html in the DocumentRoot folder of your web
server.

4. Make sure the Apache web server is running, open your browser, and
enter the following URL:

http://localhost:8080/jquery2.html

5. Click the button on the web page and watch the text on the page.

There are a couple of new things I threw into this example, so let me explain a bit:

 » I added a button element at the bottom of the web page. Notice that I
didn’t need to add the onclick attribute for the button as I used in the
preceding chapter with JavaScript. The jQuery library is kind enough to do
that for us!

 » In the jQuery code I added the following line:

$("button").click(function() {

The first part you should recognize — it finds the first button element on the
web page. The code then applies the .click() function to that object. The
browser runs this function when it detects that the site visitor clicks the
referenced button. In this case, when the button gets clicked, the code triggers
another anonymous function. The code in the anonymous function is

$("p").text("This has changed!");

252 BOOK 3 JavaScript

When you click the button, you should see the content of the p element
change to the text you specify in the jQuery code, right before your eyes, as
shown in Figure 3-2!

You use this method to change any type of text content in any type of block
element.

Working with HTML
The .text() function allows you to change the text contained within an element,
but it doesn’t change the HTML5 code for the element. You can do that by using
the .html() function:

$("p").html("<h1>This changed to a heading</h1>");

Notice that you need to supply the full HTML5 element tags along with the text
that you want to appear in the element.

If you replace the original .text() function in the example code with this line,
when you click the button the p element turns into an h1 element, and the browser
styles it accordingly, as shown in Figure 3-3!

FIGURE 3-2:
The result of the
jquery2.html

program.

U
si

ng
 jQ

ue
ry

CHAPTER 3 Using jQuery 253

Working with attributes
Not only can you modify the text and HTML code in an element, but you can also
retrieve and set attributes for the element using the .attr() function. To retrieve
an attribute value, use the following format:

$(selector).attr("attribute");

To set a value associated with an attribute of the element, the format is as follows:

$(selector).attr("attribute", "value");

This allows you to change the appearance of an element by modifying the attri-
butes as needed from your jQuery code.

Working with form values
One of the greatest features of the jQuery library is the ability to dynamically read
and modify data in HTML5 forms. This feature comes in handy if you need to
validate form data as your site visitors are typing it into the form, before it even
leaves their workstations!

The .val() function provides access to the value attribute for input elements:

var data = $("input").val();

FIGURE 3-3:
Changing the

element using
the .html()

function.

254 BOOK 3 JavaScript

The value HTML5 attribute also allows you to set the default value that appears in
the input form. So by adding a value to the .val() function, you can control what
text appears in the form field as well:

$("input").val("Enter your last name");

The next chapter shows you how you can trigger the .val() function as your site
visitor presses each key as she’s typing in the form fields. With that feature, you
can create dynamic search results as the visitor is typing!

Changing Styles
The jQuery library can do more than just change the content that appears in the
web page. It also contains functions that help you dynamically change the styles
that the browser applies to elements on the web page.

This section discusses how you can access the CSS properties assigned to an object,
as well as modify them on the fly as your site visitor interacts with the web page.

Playing with properties
Book 2, Chapter 2, shows how you can apply CSS3 styles to elements to not only
style them but also position them on the web page. Style rules defined in an inter-
nal or external style sheet determine just how the browser displays and positions
the element on the web page.

The jQuery library provides some functions for you to use to help manipulate the
CSS3 properties that the browser applies to elements. The first one I talk about is
the .css() function.

The .css() function allows you to retrieve and set individual properties or a
group of properties for any element in the web page. To retrieve the current value
assigned to a CSS3 property, you use the following format, where selector is
the CSS-style selector for finding the element and property is the CSS3 property
name you want to retrieve:

$(selector).css(property);

For example, to determine the background color applied to a div element, you’d
use the following:

var color = $("div").css("background-color");

U
si

ng
 jQ

ue
ry

CHAPTER 3 Using jQuery 255

When you use JavaScript to set CSS3 properties, you have to use different names,
because JavaScript doesn’t support the dash in the property names. Notice that
with jQuery you use the actual CSS property name that you’re already used to
using — nothing new to learn!

Then, as you can probably guess by now, to set the CSS3 property for an element,
you just add the value as the second parameter to the function call:

$("div").css("background-color", "red");

Follow these steps to test this out:

1. Open your favorite text editor, program editor, or IDE package.

2. Type the following code:

<!DOCTYPE html>

<html>

<head>

<title>Changing Properties with jQuery</title>

</head>

<style>

 div {

 background-color:yellow;

 }

</style>

<script src="jquery-3.2.1.min.js"></script>

<script>

 jQuery(document).ready(function() {

 $("button").click(function() {

 $("p").css("background-color", "red");

 $("p").css("font-size", "50px");

 });

 });

</script>

<body>

<div id="container">

<h1>This is my heading</h1>

<p>This is some content on my web page</p>

<button>Test button</button>

</div>

</body>

</html>

256 BOOK 3 JavaScript

3. Save the file as jquery4.html in the DocumentRoot folder of your web
server.

4. Make sure the Apache web server is running, and then open your
browser and enter the following URL:

http://localhost:8080/jquery4.html

5. Click the button and watch the content from the p element on the
web page.

This version of our example program uses a short CSS internal style sheet to set
the background color of the div element around the elements on the web page.
When jQuery detects the button click, it applies two new styles to the p element —
changing the background color to red and increasing the font size to 50 pixels.
Figure 3-4 shows what this looks like after you click the button.

You can apply as many styles to as many elements as you need within the event
trigger. However, the more styles you apply, the messier it gets. But fortunately,
there are a couple of solutions to that problem.

Using CSS objects
Instead of piling multiple .css() function lines on top of each other, trying to
change lots of different style properties, you can create a style object in jQuery. The
style object allows you to specify styles just as you do in the CSS3 style sheet and
provide multiple styles in a single .css() function.

FIGURE 3-4:
The result of the
jquery4.html

program.

U
si

ng
 jQ

ue
ry

CHAPTER 3 Using jQuery 257

The style object has the following format:

{"property1":"value1", "property2":"value2"...}

Now things are really starting to look familiar — very similar to how CSS rules
define properties and their values! Using this format, you can combine the two
style changes in the jquery4.html example to one line:

$("p").css({"background-color":"red", "font-size":"50px"});

This is a great way to make dramatic changes to the web page layout and style
dynamically in response to events that your site visitor triggers, such as changing
the background color of text boxes as data is entered, or changing the location of
important content that may be missed.

Using CSS classes
Things are starting to get pretty fancy with your jQuery style coding, and you’re
starting to introduce another issue to your program. Now you’re embedding styles
inside your jQuery code, separate from the rest of the styles defined in the CSS3
style sheets. That can make things somewhat confusing when you’re trying to
troubleshoot a problem, or even if you’re trying to go back over your own code
several months later!

To solve that issue, the brilliant jQuery developers added another set of functions
that interact with CSS3 class rules. With the jQuery class functions, you can add,
remove, or even toggle a class to an element. Table 3-1 shows the classes available
for you.

TABLE 3-1	 The jQuery Class Functions
Function Description

.addClass(class) Adds the specified class to the element

.hasClass(class) Returns a true value if the element contains the specified class attribute

.removeClass(class) Removes the specified class from the element

.toggleClass(class) Alternately adds and removes the specified class each time it’s called

258 BOOK 3 JavaScript

Now all you need to do is place the group of style properties you need into a class
rule in your CSS style sheet definitions, and then add, remove, or even toggle the
class for the element. The .hasClass() function allows you to check what class is
currently assigned to the element.

Follow these steps to try this feature out:

1. Open the jquery4.html file from the previous example in your editor.

2. Modify the code so that it looks like this:

<!DOCTYPE html>

<html>

<head>

<title>Changing Properties with jQuery</title>

</head>

<style>

 div {

 background-color:yellow;

 }

 .changeit {

 background-color:red;

 font-size:50px;

 }

</style>

<script src="jquery-3.2.1.min.js"></script>

<script>

 jQuery(document).ready(function() {

 $("button").click(function() {

 $("p").toggleClass("changeit");

 });

 });

</script>

<body>

<div id="container">

<h1>This is my heading</h1>

<p id="content">This is some content on my web page</p>

<button>Test button</button>

</div>

</body>

</html>

U
si

ng
 jQ

ue
ry

CHAPTER 3 Using jQuery 259

3. Save the file as jquery5.html in the DocumentRoot folder of the Apache
web server.

4. Ensure that the Apache web server is running, and then open your
browser and enter the following URL:

http://localhost:8080/jquery5.html

5. Click the button multiple times to toggle the style effects on and off.

In the updated code, I added a new class rule to the internal style sheet:

 .changeit {

 background-color:red;

 font-size:50px;

 }

And I used the .toggleClass() function to apply it to the p element:

$("p").toggleClass("changeit");

For even more fun, you can use the .show() and .hide() jQuery functions, which
pretty much do what they say. They change the display CSS3 property of the ele-
ment to block (for .show()) or none (for .hide()).

Changing the Document Object Model
Not only can you use jQuery to modify content and styles of the existing elements
in your Web page, you can also use it to add or remove entire elements! There are
a handful of different jQuery functions available for manipulating the element
nodes contained in the DOM tree.

Adding a node
You can use jQuery to add a new node to the DOM tree to display additional con-
tent as needed. Table 3-2 shows the functions available for adding new nodes.

260 BOOK 3 JavaScript

Note the subtle difference between the .after() and .append() functions. The
.append() function adds the new node to the end of the existing node, so it
becomes a child node of the existing node in the DOM. The .after() function, on
the other hand, adds a new sibling node after the existing node in the DOM. Like-
wise for the .before() and .prepend() functions.

For example, you can add a new p element to the existing p element in your exam-
ple program by adding the following code:

$("p").after("<p>This is a new node</p>");

As you would expect, when you run one of these functions, the new node imme-
diately appears in the web page.

Removing a node
The jQuery library provides two functions for you to remove existing nodes from
the DOM:

 » .empty(): Removes all child nodes from the specified node

 » .remove(): Removes the specified node

It’s important to note that the .empty() function doesn’t remove the specified
node — it just removes any child nodes associated with the node.

TABLE 3-2	 The jQuery Functions to add DOM Nodes
Function Description

.after() Adds a node after an existing node

.append() Adds a node to the end of an existing node

.appendTo() Adds a new node to the end of an existing node

.before() Adds a node before an existing node

.insertAfter() Adds a new node after an existing node

.insertBefore() Adds a new node before an existing node

.prepend() Adds a node to the beginning of an existing node

.prependTo() Adds a new node to the beginning of an existing node

U
si

ng
 jQ

ue
ry

CHAPTER 3 Using jQuery 261

Playing with Animation
When you run the jquery4.html example code to change the background color
and font size, the changes occur almost immediately after you click the button.
That’s a pretty stark effect, which can be toned down some.

One of the cooler features of jQuery is the ability to animate style changes. With
the .animate() function, you can specify an endpoint style for the content, and
jQuery will slowly work its way to that endpoint from the current style. This slow
morphing process causes the web page to look like it’s animated!

This is a hard feature to explain without actually viewing it, so follow these steps
to try it out:

1. Open the jquery4.html file in your editor.

2. Change the line that sets the font-size style property to use the
.animate() function.

Look for the following line:

$("p").css("font-size", "20px");

And change it to this:

$("p").animate({"font-size": "50px"});

3. Save the new file as jquery6.html in the DocumentRoot folder for the web
server.

4. Ensure the Apache web server is running and then open your browser
and enter the following URL:

http://localhost:8080/jquery6.html

5. Click the button and watch the animation.

The .animate() function requires a CSS object, so even if you just specify one
property to change, you must use the object format. When you click the button,
instead of an instant change in font size, you see the text “grow” to get to the font
size. You can change the rate of animation by adding a second parameter to the
.animate() function — the milliseconds it takes to get to the final endpoint value.
The default is 400 milliseconds (ms).

CHAPTER 4 Reacting to Events with JavaScript and jQuery 263

Reacting to Events with
JavaScript and jQuery

In the previous chapters in this minibook, I explain how to incorporate both
JavaScript and jQuery into your HTML5 code to help create a dynamic web
application. The trick to using JavaScript and jQuery, though, is knowing when

to use them. How are you supposed to know when your site visitor is hovering
the mouse pointer over a product in your catalog to pop up more information?
Fortunately, your web page is talking to you, telling you what your website visi-
tors are doing at all times. All you need to do is listen to your web page and direct
your JavaScript or jQuery code accordingly. That’s exactly what this chapter shows
you how to do.

Understanding Events
The world is full of events. There are birthday events, holiday events, school
events, all types of events competing for your time. Your world is loaded with
events, and it’s your job to determine which events to participate in (your birth-
day) and which ones to ignore (Talk Like a Pirate Day?).

The same is true with your web application. There are lots of events that your site
visitor generates as she interacts with your web page. Each time your site visitor

Chapter 4

IN THIS CHAPTER

 » Exploring web page events

 » Using events with JavaScript

 » Working with jQuery and events

264 BOOK 3 JavaScript

moves the mouse, that’s an event. Each time she types text into a form field,
that’s an event. And of course, each time she clicks the mouse on a link or button,
those are events, too. The key to successful dynamic web applications is to detect
the events you need and ignore the ones you don’t need.

Event-driven programming
Most of the JavaScript code earlier in this minibook uses procedural programming.
In procedural programming, the browser follows your JavaScript code line by line,
processing each statement as it appears in the program.

There’s another way to write programs, called event-driven programming. With
event-driven programming, your program centers around events that occur in the
web page. You must define a list of events to monitor, and if one of those events
occurs, the browser runs the JavaScript function you’ve defined for the event.

With event-driven programming, you need to know what events to watch for.
This section details the events that are generated by the browser on the different
activities that occur while your site visitor views your web page.

Watching the mouse
No, I’m not talking about Mickey. I’m talking about paying attention to what your
site visitor is doing with the mouse device on his or her workstation. Believe it or
not, your browser tracks every single move and action your mouse takes. You can
tap into that wealth of information with your JavaScript or jQuery programs.

As you can imagine, there are many different events that the mouse generates as
you move it around. Table 4-1 shows a list of the different mouse event names
generated by the browser as defined in HTML5 and JavaScript. Later on, I show
you the jQuery version of the event names.

As you can tell from the list in Table 4-1, you can watch exactly what your site
visitors are doing while viewing your web page. (Scary!) Although this informa-
tion can be useful, it can also result in information overload. The key to successful
mouse watching is to only watch for the important events, such as when the site
visitor clicks the primary mouse button on an object in the web page or when the
mouse is hovering over an object.

It’s not a good idea to write code that watches the onmousemove event, because
that event triggers for every pixel the mouse pointer moves to on the screen, gen-
erating thousands of events at a time!

Re
ac

ti
ng

 t
o

Ev
en

ts
 w

it
h

Ja
va

Sc
ri

pt
 a

nd
 jQ

ue
ry

CHAPTER 4 Reacting to Events with JavaScript and jQuery 265

Listening for keystrokes
The keyboard talks to the browser, too. You can watch for key events in your
JavaScript or jQuery programs just as you watch the mouse. Unlike the long list of
mouse events, there are only three keyboard events for you to work with:

 » onkeydown: A key is being pressed down.

 » onkeypress: A key has been pressed and released.

 » onkeyup: A key has been released.

Notice the subtle difference between the three events. The onkeydown event only
triggers while the site visitor is pressing the key. Both the onkeypress and onkeyup
events trigger when the site visitor releases the key. Granted, for most typing
situations, the difference is very small, but for some applications (for example,
games), it can be useful to know how long a key is being pressed, which you can
only get from the onkeydown event.

The term keystroke may be misleading. There are some keys on the standard key-
board that don’t generate a keystroke themselves, such as the Shift, Alt, and Ctrl
keys on a Windows keyboard. These keys are modifiers for other keys that gener-
ate the keystrokes.

TABLE 4-1	 Mouse Events
Event Description

onclick The primary mouse button has been clicked.

oncontextmenu The secondary mouse button has been clicked.

ondblclick The primary mouse button has been double-clicked.

onmousedown The primary mouse button has been depressed.

onmouseenter The mouse pointer has entered a specific area in the window.

onmouseleave The mouse pointer has left a specific area in the window.

onmousemove The mouse pointer is moving.

onmouseover The mouse pointer is hovering over an object.

onmouseout The mouse pointer has left a specific area in the window.

onmouseup The primary mouse button has been released.

266 BOOK 3 JavaScript

Paying attention to the page itself
Even the web page itself has events that your JavaScript and jQuery programs can
listen for. Before HTML5, there were only a handful of page events that you could
tap into. The newer HTML5 standard has defined a lot more page events to work
with. Table 4-2 lists the more common HTML events that you may run into.

The web page events allow you to track when your web page first appears in the
site visitor’s browser and when it leaves (and even just before it leaves). This gives
you the opportunity to load things right up front when the page appears, or per-
form some operation as the page is about to disappear from the browser window.

TABLE 4-2	 Page Events
Event Description

onafterprint Triggers after the site visitor prints the web page

onbeforeprint Triggers before the site visitor prints the web page

onbeforeunload Triggers just before the web page is removed from the browser window

onerror Triggers when there is an error in loading a required file for the web page

onhaschange Triggers when the server address of the URL has changed

onload Triggers when the body of the web page loads

onmessage Triggers when a message is sent to the browser window

onoffline Triggers when the site visitor sets the browser to view the web page offline

ononline Triggers when the site visitor sets the browser to view the web page online

onpagehide Triggers when the site visitor navigates away from the web page

onpageshow Triggers when the web page appears in the browser window

onpopstate Triggers when the browser’s history changes

onresize Triggers when your site visitor resizes the browser window

onstorage Triggers when a web storage area is updated

onscroll Triggers when the site visitor moves the scrollbar in the browser window

onunload Triggers when the web page is removed from the browser window

Re
ac

ti
ng

 t
o

Ev
en

ts
 w

it
h

Ja
va

Sc
ri

pt
 a

nd
 jQ

ue
ry

CHAPTER 4 Reacting to Events with JavaScript and jQuery 267

Focusing on JavaScript and Events
JavaScript and HTML5 team up to provide a way for your program to listen for
events and perform some type of action when they occur. The HTML5 element
code registers a JavaScript function for the browser to run when a specific element
event occurs.

Different HTML5 elements generate different events based on how they interact
with the site visitor on the web page. The following sections walk you through
how to set up a JavaScript event monitor for different HTML5 elements.

Saying hello and goodbye
The page events allow you to monitor when the web page loads and unloads from
the site visitor’s browser. You use these in the <body> tag of the web page to spec-
ify any onload or onunload event functions you need to run:

<body onload="welcome()">

In this example, the browser runs the welcome() JavaScript function when the
web page first loads into the browser window, as shown in Figure 4-1.

FIGURE 4-1:
Running a

function when
the web page

loads in the
Chrome browser.

268 BOOK 3 JavaScript

There’s some controversy as to just what the term loads means for the onload
event. Some browsers trigger the onload event as the first thing before processing
any of the HTML5 elements into the Document Object Model (DOM), while oth-
ers wait until all the HTML5 elements have been processed before triggering the
event. Because of this, it’s not recommended to try to access any of the web page
elements from a function triggered by the onload event — there’s no guarantee
that they’ll be there yet.

You can test the onload event out in your own browsers by following these steps:

1. Open your favorite text editor, program editor, or integrated develop-
ment environment (IDE) package.

2. Type the following code into the editor window:

<!DOCTYPE html>

<html>

<head>

<title>Testing the Page Events</title>

<script>

 function welcome() {

 alert("Welcome to my website!");

 }

</script>

</head>

<body onload="welcome()">

<h1>This is the main web page</h1>

<p>This is some content on the web page</p>

</body>

</html>

3. Save the file as loadtest.html in the DocumentRoot folder of your web
server.

For XAMPP on Windows, that’s c:\xampp\htdocs; for XAMPP on macOS, that’s
/Applications/XAMPP/htdocs.

4. Open the XAMPP Control Panel, and start the Apache web server.

5. Open your browser and enter the following URL:

http://localhost:8080/loadtest.html

You may need to change the TCP port to match your web server.

You should see the welcome alert message, but you may or may not see the
HTML code behind it on the web page.

Re
ac

ti
ng

 t
o

Ev
en

ts
 w

it
h

Ja
va

Sc
ri

pt
 a

nd
 jQ

ue
ry

CHAPTER 4 Reacting to Events with JavaScript and jQuery 269

6. Try different browsers to see if they behave any differently.

Figure 4-1 show the results from running the test using the Chrome browser.
The alert() message appears from the onload event, but no content appears in
the web page yet. Figure 4-2 shows running the same test using the Microsoft
Edge browser.

The Edge browser displays the elements on the web page and then triggers the
onload event to run the alert() function!

Using the onunload and onbeforeunload events can be even more problematic.
Most browsers won’t allow you to use the alert() function after the browser
window has already closed, so don’t try to use that in the onunload event. Usu-
ally you can still access the DOM tree objects during the unload process, but
even that’s not guaranteed. It’s common practice to only use the onunload and
onbeforeunload events to trigger functions that ensure any application data is
safely stored before the application closes out the web page.

Listening for mouse events
To trigger a JavaScript function for mouse events, you need to define the events
as attributes in the HTML5 elements. This section shows you how to do that for a
few different mouse events.

FIGURE 4-2:
Running the

onload test using
the Microsoft

Edge browser.

270 BOOK 3 JavaScript

Clicking the button
When your website visitor clicks the primary mouse button anywhere on your
web page, that triggers an onclick event. To capture that event for individual
elements, you must use add the onclick attribute to the element opening tag and
specify the JavaScript function you want the browser to run when the event trig-
gers. For example:

<button onclick="myfunction()">

If you have more than one button on your web page, you can pass a parameter to
the JavaScript function identifying which button was selected:

<button onclick="func('buy')">Buy</button>

<button onclick="func('browse')">Browse</button>

<button onclick="func('help')">Help</button>

Notice that to pass a string value inside the attribute value you must use sin-
gle quotes around the string value if you use double quotes around the HTML
attribute. If you use double quotes, the browser will confuse them with the double
quotes used to delimit the attribute value.

Follow these steps to test out listening for button clicks:

1. Open your favorite editor.

2. Type the following code:

<!DOCTYPE html>

<html>

<head>

<title>Testing Button Events</title>

<script>

 function clickme(name) {

 if (name == "help") {

 alert("Do you need some help?");

 } else if (name == "buy") {

 alert("What would you like to buy?");

 } else if (name == "browse") {

 alert("You can browse our catalog");

 }

 }

</script>

</head>

<body>

Re
ac

ti
ng

 t
o

Ev
en

ts
 w

it
h

Ja
va

Sc
ri

pt
 a

nd
 jQ

ue
ry

CHAPTER 4 Reacting to Events with JavaScript and jQuery 271

<h1>Store Menu</h1>

<p>Here are the current options:</p>

<button onclick="clickme('buy')">Buy a product</button>

<button onclick="clickme('browse')">Browse our catalog</button>

<button onclick="clickme('help')">Get Help</button>

</body>

</html>

3. Save the file as buttontest.html in the DocumentRoot folder of your web
server.

4. Ensure that the Apache web server is still running.

5. Open your browser and enter the following URL:

http://localhost:8080/buttontest.html

6. Click each of the buttons that appears on the web page.

7. Close the browser window when you’re done testing.

As you click each button, a different alert dialog box should appear, as shown in
Figure 4-3.

FIGURE 4-3:
The Help alert

dialog box
appearing from

the buttontest.
html application.

272 BOOK 3 JavaScript

If you prefer, you can also use a unique ID attribute for each button to help iden-
tify it in the event function code.

Hovering the pointer
It may seem odd, but the onmouseover and onmouseout events allow you to alter
the appearance of many types of elements as your website visitors hover their
mouse pointers over them. You’re not limited to using these events on only but-
tons; you can work with the mouse events from inside any standard block ele-
ment, such as paragraph and heading elements within your web page. Follow
these steps to try that out:

1. Open your editor.

2. Type the following code:

<!DOCTYPE html>

<html>

<head>

<title>Testing Mouse Events</title>

<style>

 #test {

 background-color: yellow;

 width:400px;

 }

</style>

<script>

 function changeit(state) {

 if (state == "in") {

 document.getElementById("test").style.backgroundColor="red";

 } else if (state == "out") {

 document.getElementById("test").style.backgroundColor="yellow";

}

 }

</script>

</head>

<body>

<h1>This is a test of the mouse events</h1>

<p id="test" onmouseover="changeit('in')" onmouseout="changeit('out')">

This is some content that will change color!</p>

</body>

</html>

Re
ac

ti
ng

 t
o

Ev
en

ts
 w

it
h

Ja
va

Sc
ri

pt
 a

nd
 jQ

ue
ry

CHAPTER 4 Reacting to Events with JavaScript and jQuery 273

3. Save the file as hovertest.html in the DocumentRoot folder of your web
server.

4. Ensure that the Apache web server is running.

5. Open your browser and enter the following URL:

http://localhost:8080/hovertest.html

6. Move your mouse pointer around through the text in the paragraph and
observe what happens.

The background color of the p element text should change when your mouse
pointer hovers over it.

7. Close your browser window when you’re done testing.

The onmouseover event triggers the changeit() JavaScript function, passing the
text in, while the onmouseout event triggers the same changeit() JavaScript
function, but passes the text out. The JavaScript code detects the value passed
to the changeit() function and sets the background-color style property of the
p element accordingly.

Listening for keystrokes
Elements that accept data entry, such as text boxes and text areas, can trigger the
keystroke events as your site visitors type. This allows you to monitor just what
data your site visitors enter into the form fields as they type.

You’ll often find yourself in situations where you need to count characters entered
into a text box or text area in a form. You can use the onkeyup event to trigger a
counter that counts the keystrokes.

Follow these steps to create a small program to demonstrate this feature using
JavaScript and the onkeyup event:

1. Open your favorite editor.

2. Type the following code:

<!DOCTYPE html>

<html>

<head>

<title>Testing Keystroke Events</title>

274 BOOK 3 JavaScript

<script>

 function gotkey() {

 var count =document.getElementById("text").value.length;

var output = "Character count: " + count;
 document.getElementById("status").innerHTML=output;

}

</script>

</head>

<body>

<h1>Testing for keystrokes</h1>

<p>Please enter some text into the text area</p>

<textarea id="text" cols="50" rows="20" onkeyup="gotkey()"></textarea>

<p id="status"></p>

</body>

</html>

3. Save the file as keytest.html in the DocumentRoot folder of your
web server.

4. Ensure that the Apache web server is running.

5. Open your browser and enter the following URL:

http://localhost:8080/keytest.html

6. Start typing some text in the text area that appears on the page.

You should see the character count appear under the text area and be able to
keep track of the characters that appear.

7. Close the browser to exit the program.

The gotkey() function uses the length property of the value attribute of the
element. By stringing them all together into the same statement, you can easily
return the number of characters that are currently in the text area:

var count = document.getElementById("text").value.length;

The p element after the text area starts out empty, but for each triggering of
the gotkey() function, it changes the innerHTML property to the string that was
stored in the output variable. Figure 4-4 shows what the result will look like as
you type text into the text area.

Re
ac

ti
ng

 t
o

Ev
en

ts
 w

it
h

Ja
va

Sc
ri

pt
 a

nd
 jQ

ue
ry

CHAPTER 4 Reacting to Events with JavaScript and jQuery 275

Now you can provide an interface that tells your site visitors how many charac-
ters they’ve typed into a text box or text area! You can take this feature one step
 further by disabling the text area if they’ve entered too many characters:

function gotkey() {

 var count = document.getElementById("text").value.length;

 if (count > 20) {

 var output = "Sorry, that's too many characters";

 document.getElementById("text").disabled="disabled";

 } else {

 var output = "Character count: " + count;
 }

 document.getElementById("status").innerHTML=output;

 }

Now things are really starting to get fancy!

Event listeners
JavaScript provides one more way to assign events to elements. You use the
.addEventListener() function to dynamically assign events to monitor the
 elements on your web page. That looks like this:

document.getElementById("button1").addEventListener("click", clickbuy);

FIGURE 4-4:
Counting

keystrokes in the
keytest.html

program.

276 BOOK 3 JavaScript

The first parameter of the .addEventListener() function defines the event to
monitor (note the missing on as part of the event name). The second parameter
specifies the function to call when the event is triggered. (Also note the missing
parentheses in the function name.)

Just as you can dynamically add an event listener to an element, you can remove
it using the .removeEventListener() function.

You can assign two or more functions to the same event trigger for an element.
The JavaScript interpreter will trigger each function when the event occurs.

Looking at jQuery and Events
The jQuery library uses a slightly different approach to handling events. Instead
of relying on the HTML5 event attributes in elements, it monitors the events in
the browser and allows you to tap into them directly. This helps simplify things,
because you don’t need to split the event code between the HTML5 code and the
jQuery code. Everything you need is in the jQuery code.

jQuery event functions
The jQuery library provides functions for handling all the HTML5 events that you’ve
seen. The benefit of using the jQuery event model is that you don’t need to specify the
event attribute in the HTML5 code — the jQuery function does all the work for you!

For example, to monitor for the onclick event for a button, you just simply use
the following:

$("button").click(function() {

 code

});

This creates an anonymous function to run whenever the site visitor clicks the
button. The actual HTML5 button element would look like this:

<button>Click here</button>

And that’s all you need! The benefit of this method is that you do all the event
coding in the JavaScript code — there’s nothing in the HTML5 code.

For the most part, the jQuery event functions mirror the HTML5 event attributes,
but leave off the on part in the event name. There are, however, a couple of extra

Re
ac

ti
ng

 t
o

Ev
en

ts
 w

it
h

Ja
va

Sc
ri

pt
 a

nd
 jQ

ue
ry

CHAPTER 4 Reacting to Events with JavaScript and jQuery 277

handy event functions available. Table 4-3 shows a list of the jQuery events that
you’re most likely to use.

TABLE 4-3	 The jQuery Event Functions
Event Description

blur() Triggers when the element loses the window focus

change() Triggers when the element changes

click() Triggers when the primary mouse button clicks on the element

dblclick() Triggers when the primary mouse button is double-clicked on the event

focus() Triggers when the element gains the window focus

focusin() Triggers when the element or a child element gains the window focus

focusout() Triggers when the element or a child element loses the window focus

hover() Defines two functions — one for when the mouse pointer is over the element
and another one for when it leaves

keydown() Triggers when a key is held down

keypress() Triggers when a key is pressed and released

keyup() Triggers when a key is released

mousedown() Triggers when the primary mouse button is held down

mouseenter() Triggers when the mouse pointer enters the element area

mouseleave() Triggers when the mouse pointer leaves the element area

mousemove() Triggers when the mouse pointer moves

mouseout() Triggers when the mouse pointer leaves the element area

mouseover() Triggers when the mouse pointer is over the element area

mouseup() Triggers when the primary mouse button is released

ready() Triggers when the DOM tree is fully populated

resize() Triggers when the browser window has been resized

scroll() Triggers when the site visitor uses the scrollbar

select() Triggers when an item is selected

submit() Triggers when a submit button has been clicked

278 BOOK 3 JavaScript

An extremely handy addition is the hover() function. It allows you to define two
separate functions at the same time — one for when the mouse is hovering over the
element and another for when it’s not. Follow these steps to test this feature out.

1. Open your favorite editor.

2. Type the following code into the editor window:

<!DOCTYPE html>

<html>

<head>

<title>Testing Mouse Events</title>

<style>

 .yellow {

 background-color: yellow;

 width: 400px;

 }

 .red {

 background-color: red;

 width: 400px;

 }

</style>

<script src="jquery-3.2.1.min.js"></script>

<script>

 jQuery(document).ready(function() {

 $("p").hover(function() {

 $(this).addClass("red"); },

 function() {

 $(this).removeClass("red"); });

 });

</script>

</head>

<body>

<h1>This is a test of the mouse events</h1>

<p class="yellow">This is some content that will change color!</p>

<p>This is some content that will change color, too!</p>

</body>

</html>

Re
ac

ti
ng

 t
o

Ev
en

ts
 w

it
h

Ja
va

Sc
ri

pt
 a

nd
 jQ

ue
ry

CHAPTER 4 Reacting to Events with JavaScript and jQuery 279

3. Save the file as jhovertest.html in the DocumentRoot folder for your web
server.

4. Ensure that the Apache web server is running.

5. Open your browser and enter the following URL:

http://localhost:8080/jhovertest.html

6. Move the mouse pointer around to hover over the p element sections
and watch what happens.

Each p element should get the red background only when you hover over it;
the other p element should stay the same.

7. Close out the browser to end the test.

In the code for this example, everything happens in the jQuery code:

jQuery(document).ready(function() {

 $("p").hover(function() {

 $(this).addClass("red"); },

 function() {

 $(this).removeClass("red"); });

});

You should recognize the first line, which tells jQuery to wait until the browser
loads the document before running the function code. The function code selects all
p elements and then assigns the hover() event function to them. In this example,
I created two p elements to show another neat feature in jQuery.

When you hover over each p element, only that p element changes background
color! The key to that is the $(this) object in jQuery. The $(this) object repre-
sents the currently selected object. Using that, whichever p element triggered the
event is the one that the addClass() function applies to, while the other p ele-
ment is ignored. That saves us a whole lot of code from having to uniquely identify
each p element on the web page! Figure 4-5 shows the result of the program in
action.

This example shows just how easy it is to code events with jQuery. One of the
primary goals of jQuery is to make coding for handling events easier, and I’d say
they met their goals!

280 BOOK 3 JavaScript

The jQuery event handler
The jQuery library also provides a way for you to code event handlers. With jQuery,
the event handler function is called on(). Here’s the format for the on() function:

$(selector).on("event", "filter", data, function() {

 code

});

The selector part you should be familiar with now. It determines which element(s)
the event handler is attached to. The event parameter defines the jQuery event to
attach to the element(s). The filter parameter is a little different. It defines a
child selector to the main selector you specify. For example, if you only want to
capture click events on buttons within an article element section, you’d use the
following:

$("article").on("click", "button", function() {

To test this feature out, follow these steps to convert the keytest.html JavaScript
code you worked on earlier to use jQuery instead:

1. Open your favorite editor.

2. Type the following code into the editor window:

<!DOCTYPE html>

<html>

<head>

<title>Testing jQuery Keystroke Events</title>

FIGURE 4-5:
The jhover.
html code test

only changes one
p element at

a time.

Re
ac

ti
ng

 t
o

Ev
en

ts
 w

it
h

Ja
va

Sc
ri

pt
 a

nd
 jQ

ue
ry

CHAPTER 4 Reacting to Events with JavaScript and jQuery 281

<script src="jquery-3.2.1.min.js"></script>

<script>

 jQuery(document).ready(function() {

 $("textarea").on("keyup", function() {

 var count = $(this).val().length;

 var output = "Character count: " + count;
 $("#status").text(output);

 });

 });

</script>

</head>

<body>

<h1>Testing for keystrokes</h1>

<p>Please enter some text into the text area</p>

<textarea cols="50" rows="20"></textarea>

<p id="status"></p>

</body>

</html>

3. Save the file as jkeytest.html in the DocumentRoot folder of your web
server.

4. Ensure that the web server is running.

5. Open your browser and enter the following URL:

http://localhost:8080/jkeytest.html

6. Start typing text in the text area.

You should see the count message appear in the status area, showing the
accurate count of how many characters are in the text area.

7. Close the browser window when you’re finished.

8. Stop the web server.

One thing you have to say about jQuery code: It’s a lot cleaner looking than the
JavaScript version! Notice that now you don’t need to define an event attribute in
the <textarea> tag. jQuery takes care of that for you.

282 BOOK 3 JavaScript

The jQuery code itself is fairly clean and uncomplicated:

jQuery(document).ready(function() {

 $("textarea").on("keyup", function() {

 var count = $(this).val().length;

 var output = "Character count: " + count;
 $("#status").text(output);

 });

});

It starts out as usual, waiting for the document DOM to load and then assigns the
event handler to the text area element on the web page. The event handler looks
for the keyup event; when it’s detected, the handler function retrieves the length
of the text in the text area (again, using the $(this) selector) and then outputs it
to the status p element area. Figure 4-6 shows how this looks.

The results are the same as the JavaScript version, but with a lot less coding!

To define an event handler that only triggers once and goes away, use the one()
function instead of the on() function. To remove an event handler that you’ve
defined for a selector, use the off() function.

FIGURE 4-6:
The output of

the jkeytest.
html program in

action.

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part1 Getting Started with Web Programming
	Chapter 1 Examining the Pieces of Web Programming
	Creating a Simple Web Page
	Kicking things off with the World Wide Web
	Making sense of markup languages
	Retrieving HTML documents
	Styling

	Creating a Dynamic Web Page
	Client-side programming
	Server-side programming
	Combining client-side and server-side programming

	Storing Content

	Chapter 2 Using a Web Server
	Recognizing What’s Required
	The web server
	The PHP server
	The database server

	Considering Your Server Options
	Using a web-hosting company
	Building your own server environment
	Using premade servers

	Tweaking the Servers
	Customizing the Apache Server
	Customizing the MySQL server
	Customizing the PHP server

	Chapter 3 Building a Development Environment
	Knowing Which Tools to Avoid
	Graphical desktop tools
	Web-hosting sites
	Word processors

	Working with the Right Tools
	Text editors
	Program editors
	Integrated development environments
	Browser debuggers

	Part2 HTML5 and CSS3
	Chapter 1 The Basics of HTML5
	Diving into Document Structure
	Elements, tags, and attributes
	Document type
	Page definition
	Page sections

	Looking at the Basic HTML5 Elements
	Headings
	Text groupings
	Breaks

	Marking Your Text
	Formatting text
	Using hypertext

	Working with Characters
	Character sets
	Special characters

	Making a List (And Checking It Twice)
	Unordered lists
	Ordered lists
	Description lists

	Building Tables
	Defining a table
	Defining the table’s rows and columns
	Defining the table headings

	Chapter 2 The Basics of CSS3
	Understanding Styles
	Defining the rules of CSS3
	Applying style rules
	Cascading style rules

	Styling Text
	Setting the font
	Playing with color

	Working with the Box Model
	Styling Tables
	Table borders
	Table data

	Positioning Elements
	Putting elements in a specific place
	Floating elements

	Chapter 3 HTML5 Forms
	Understanding HTML5 Forms
	Defining a form
	Working with form fields

	Using Input Fields
	Text boxes
	Password entry
	Check boxes
	Radio buttons
	Hidden fields
	File upload
	Buttons

	Adding a Text Area
	Using Drop-Down Lists
	Enhancing HTML5 Forms
	Data lists
	Additional input fields

	Using HTML5 Data Validation
	Holding your place
	Making certain data required
	Validating data types

	Chapter 4 Advanced CSS3
	Rounding Your Corners
	Using Border Images
	Looking at the CSS3 Colors
	Playing with Color Gradients
	Linear gradients
	Radial gradients

	Adding Shadows
	Text shadows
	Box shadows

	Creating Fonts
	Focusing on font files
	Working with web fonts

	Handling Media Queries
	Using the @media command
	Dealing with CSS3 media queries
	Applying multiple style sheets

	Chapter 5 HTML5 and Multimedia
	Working with Images
	Placing images
	Styling images
	Linking images
	Working with image maps
	Using HTML5 image additions

	Playing Audio
	Embedded audio
	Digital audio formats
	Audio the HTML5 way

	Watching Videos
	Paying attention to video quality
	Looking at digital video formats
	Putting videos in your web page

	Getting Help from Streamers

	Part3 JavaScript
	Chapter 1 Introducing JavaScript
	Knowing Why You Should Use JavaScript
	Changing web page content
	Changing web page styles

	Seeing Where to Put Your JavaScript Code
	Embedding JavaScript
	Using external JavaScript files

	The Basics of JavaScript
	Working with data
	Data types
	Arrays of data
	Operators

	Controlling Program Flow
	Conditional statements
	Loops

	Working with Functions
	Creating a function
	Using a function

	Chapter 2 Advanced JavaScript Coding
	Understanding the Document Object Model
	The Document Object Model tree
	JavaScript and the Document Object Model

	Finding Your Elements
	Getting to the point
	Walking the tree

	Working with Document Object Model Form Data
	Text boxes
	Text areas
	Check boxes
	Radio buttons

	Chapter 3 Using jQuery
	Loading the jQuery Library
	Option 1: Downloading the library file to your server
	Option 2: Using a content delivery network

	Using jQuery Functions
	Finding Elements
	Replacing Data
	Working with text
	Working with HTML
	Working with attributes
	Working with form values

	Changing Styles
	Playing with properties
	Using CSS objects
	Using CSS classes

	Changing the Document Object Model
	Adding a node
	Removing a node

	Playing with Animation

	Chapter 4 Reacting to Events with JavaScript and jQuery
	Understanding Events
	Event-driven programming
	Watching the mouse
	Listening for keystrokes
	Paying attention to the page itself

	Focusing on JavaScript and Events
	Saying hello and goodbye
	Listening for mouse events
	Listening for keystrokes
	Event listeners

	Looking at jQuery and Events
	jQuery event functions
	The jQuery event handler

	Chapter 5 Troubleshooting JavaScript Programs
	Identifying Errors
	Working with Browser Developer Tools
	The DOM Explorer
	The Console
	The Debugger

	Working Around Errors

	Part4 PHP
	Chapter 1 Understanding PHP Basics
	Seeing the Benefits of PHP
	A centralized programming language
	Centralized data management

	Understanding How to Use PHP
	Embedding PHP code
	Identifying PHP pages
	Displaying output
	Handling new-line characters

	Working with PHP Variables
	Declaring variables
	Seeing which data types PHP supports
	Grouping data values with array variables

	Using PHP Operators
	Arithmetic operators
	Arithmetic shortcuts
	Boolean operators
	String operators

	Including Files
	The include() function
	The require() function

	Chapter 2 PHP Flow Control
	Using Logic Control
	The if statement
	The else statement
	The elseif statement
	The switch statement

	Looping
	The while family
	The for statement
	The foreach statement

	Building Your Own Functions
	Working with Event-Driven PHP
	Working with links
	Processing form data

	Chapter 3 PHP Libraries
	How PHP Uses Libraries
	Exploring PHP extensions
	Examining the PHP extensions
	Including extensions
	Adding additional extensions

	Text Functions
	Altering string values
	Splitting strings
	Testing string values
	Searching strings

	Math Functions
	Number theory
	Calculating logs and exponents
	Working the angles
	Hyperbolic functions
	Tracking statistics

	Date and Time Functions
	Generating dates
	Using timestamps
	Calculating dates

	Image-Handling Functions

	Chapter 4 Considering PHP Security
	Exploring PHP Vulnerabilities
	Cross-site scripting
	Data spoofing
	Invalid data
	Unauthorized file access

	PHP Vulnerability Solutions
	Sanitizing data
	Validating data

	Chapter 5 Object-Oriented PHP Programming
	Understanding the Basics of Object-Oriented Programming
	Defining a class
	Creating an object instance

	Using Magic Class Methods
	Defining mutator magic methods
	Defining accessor magic methods
	The constructor
	The destructor
	Copying objects
	Displaying objects

	Loading Classes
	Extending Classes

	Chapter 6 Sessions and Carts
	Storing Persistent Data
	The purpose of HTTP cookies
	Types of cookies
	The anatomy of a cookie
	Cookie rules

	PHP and Cookies
	Setting cookies
	Reading cookies
	Modifying and deleting cookies

	PHP and Sessions
	Starting a session
	Storing and retrieving session data
	Removing session data

	Shopping Carts
	Creating a cart
	Placing items in the cart
	Retrieving items from a cart
	Removing items from a cart
	Putting it all together

	Part5 MySQL
	Chapter 1 Introducing MySQL
	Seeing the Purpose of a Database
	How databases work
	Relational databases
	Database data types
	Data constraints
	Structured Query Language

	Presenting MySQL
	MySQL features
	Storage engines
	Data permissions

	Advanced MySQL Features
	Handling transactions
	Making sure your database is ACID compliant
	Examining the views
	Working with stored procedures
	Pulling triggers
	Working with blobs

	Chapter 2 Administering MySQL
	MySQL Administration Tools
	Working from the command line
	Using MySQL Workbench
	Using the phpMyAdmin tool

	Managing User Accounts
	Creating a user account
	Managing user privileges

	Chapter 3 Designing and Building a Database
	Managing Your Data
	The first normal form
	The second normal form
	The third normal form

	Creating Databases
	Using the MySQL command line
	Using MySQL Workbench
	Using phpMyAdmin

	Building Tables
	Working with tables using the command-line interface
	Working with tables using Workbench
	Working with tables in phpMyAdmin

	Chapter 4 Using the Database
	Working with Data
	The MySQL command-line interface
	The MySQL Workbench tool
	The phpMyAdmin tool

	Searching for Data
	The basic SELECT format
	More advanced queries

	Playing It Safe with Data
	Performing data backups
	Restoring your data

	Chapter 5 Communicating with the Database from PHP Scripts
	Database Support in PHP
	Using the mysqli Library
	Connecting to the database
	Closing the connection
	Submitting queries
	Retrieving data
	Being prepared
	Checking for errors
	Miscellaneous functions

	Putting It All Together

	Part6 Creating Object-Oriented Programs
	Chapter 1 Designing an Object-Oriented Application
	Determining Application Requirements
	Creating the Application Database
	Designing the database
	Creating the database

	Designing the Application Objects
	Designing objects
	Coding the objects in PHP

	Designing the Application Layout
	Designing web page layout
	The AuctionHelper page layout

	Coding the Website Layout
	Creating the web page template
	Creating the support files

	Chapter 2 Implementing an Object-Oriented Application
	Working with Events
	Bidder Object Events
	Listing bidders
	Adding a new bidder
	Searching for a bidder

	Item Object Events
	Listing items
	Adding a new item
	Searching for an item

	Logging Out of a Web Application
	Testing Web Applications

	Chapter 3 Using AJAX
	Getting to Know AJAX
	Communicating Using JavaScript
	Considering XMLHttpRequest class methods
	Focusing on XMLHttpRequest class properties
	Trying out AJAX

	Using the jQuery AJAX Library
	The jQuery $.ajax() function
	The jQuery $.get() function

	Transferring Data in AJAX
	Looking at the XML standard
	Using XML in PHP
	Using XML in JavaScript

	Modifying the AuctionHelper Application

	Chapter 4 Extending WordPress
	Getting Acquainted with WordPress
	What WordPress can do for you
	How to run WordPress
	Parts of a WordPress website

	Installing WordPress
	Downloading the WordPress software
	Creating the database objects
	Configuring WordPress

	Examining the Dashboard
	Using WordPress
	Exploring the World of Plugins
	WordPress APIs
	Working with plugins and widgets

	Creating Your Own Widget
	Coding the widget
	Activating the widget plugin
	Adding the widget

	Part7 Using PHP Frameworks
	Chapter 1 The MVC Method
	Getting Acquainted with MVC
	Exploring the MVC method
	Digging into the MVC components
	Communicating in MVC

	Comparing MVC to Other Web Models
	The MVP method
	The MVVM method

	Seeing How MVC Fits into N-Tier Theory
	Implementing MVC

	Chapter 2 Selecting a Framework
	Getting to Know PHP Frameworks
	Convention over configuration
	Scaffolding
	Routing
	Helper methods
	Form validation
	Support for mobile devices
	Templates
	Unit testing

	Knowing Why You Should Use a Framework
	Focusing on Popular PHP Frameworks
	CakePHP
	CodeIgniter
	Laravel
	Symfony
	Zend Framework

	Looking At Micro Frameworks
	Lumen
	Slim
	Yii

	Chapter 3 Creating an Application Using Frameworks
	Building the Template
	Initializing the application
	Exploring the files and folders
	Defining the database environment

	Creating an Application Scaffold
	Installing the scaffolding
	Exploring the scaffolding code

	Modifying the Application Scaffold
	Adding a new feature link
	Creating the controller code
	Modifying the model code
	Painting a view

	Index
	EULA

