
CHAPTER 5 Troubleshooting JavaScript Programs 283

Troubleshooting
JavaScript Programs

A fact of life when working with any type of programming language is that
there will always be errors as you develop your application code. Working
with JavaScript is no different. There are plenty of opportunities for coding

errors to cause all sorts of problems in your web applications. But don’t worry —
getting an error in your application isn’t the end of the world. There are some
simple tools at your disposal to help you find and fix those errors before your site
visitors experience them. This chapter helps give you some ideas for what to do
when errors occur as you develop your applications and offers tips for how to work
your way through them.

Identifying Errors
Your web application may run into an error and it’s fairly obvious that some-
thing went wrong — something that was supposed to happen didn’t. Other times,
however, program errors can be a little more subtle, such as altering the data in
a way that’s not obvious until you analyze the output. These types of errors are
dangerous, because often you don’t even know they’re present until it’s too late.
It helps to be able to watch your JavaScript program and observe when the subtle
coding errors occur.

Chapter 5

IN THIS CHAPTER

 » Finding errors in your JavaScript code

 » Using JavaScript debuggers

 » Working around errors

284 BOOK 3 JavaScript

The old-fashioned way of doing that was to insert alert() statements at strategic
places in your code to watch variables as your code processes things. Just stick in
the variable you want to monitor inside the alert() function to get a quick dis-
play of the value the variable contains at that point in the program:

alert(lastName);

That generates a lot of pop-up messages as you walk through your application,
but it’s a great strategy for helping watch what’s going on “behind the scenes”
in the code. This method is especially helpful with logic errors in the code — to
detect when something isn’t working quite the way you thought it would.

Yet another code troubleshooting method often used in the past was commenting
out sections of code. JavaScript supports adding comment lines in the code to help
with documenting what’s going on. There are two types of comments that you can
use in JavaScript. This is a one-line comment:

// Comments are fun!

This is a comment that spans more than one line in the code:

/* Comments allow you to document what is happening with your code. Comments are

useful, but calling them fun is a bit of a stretch. */

When JavaScript sees the comment tags, it skips any text that’s within the com-
ment. While this is mainly intended to add commentary to your programs so you
(or anyone else reading your code) know what code does what, it was also common
to use this method to temporarily remove lines or entire blocks of code from the
program without actually deleting them. Just place the JavaScript comment tags
around the code you want to skip, and then run the program to watch how it works.

These are good troubleshooting methods, and they still come in handy at times,
but today we have more sophisticated troubleshooting techniques at our fingertips.

Fortunately, all the popular web browsers today support JavaScript debuggers.
A debugger is a program that points out program errors as they occur while you run
the web application in the browser. Most debuggers also allow you to step through
your JavaScript code one line at a time. This provides the opportunity to watch as
each variable changes value, to help you track exactly where things are going awry.

All the main web browsers in use today either have a JavaScript debugger built in
or easily added as a plug-in. It has become somewhat of a standard to launch the
debugger tools by hitting the F12 key while viewing a web page. Figure 5-1 shows
the IE Developer Tools section that appears.

Tr
ou

bl
es

ho
ot

in
g

Ja
va

Sc
ri

pt
 P

ro
gr

am
s

CHAPTER 5 Troubleshooting JavaScript Programs 285

You can use the Developer Tools to help with your troubleshooting methods and
quickly find (and fix) coding issues.

Working with Browser Developer Tools
The Developer tools interface used by all the main web browsers has many of the
same features across all browsers. The interface contains seven different tabs:

 » DOM Explorer: Breaks down the web page elements into their Document
Object Model (DOM) objects. This tool is great for exploring the DOM ele-
ments, especially if you need to isolate an element to reference in your
JavaScript code.

 » Console: Displays the JavaScript console, which logs error and warning
messages caused by the JavaScript code in the web page, as well as any
messages logged to the console directly from the JavaScript program.

 » Debugger: A full-featured JavaScript debugger for troubleshooting JavaScript
code line by line.

 » Network: Displays network information about remote servers contacted to
display the content on the web page.

 » Performance: Profiles the central processing unit (CPU) utilization required
while the JavaScript code in your web page runs.

 » Memory: Profiles the memory utilization required while the JavaScript code in
your web page runs.

FIGURE 5-1:
The Microsoft

Edge Developer
Tools interface.

286 BOOK 3 JavaScript

 » Emulation: In addition to the standard developer tools, the Internet Explorer
and Edge browsers allow you to change the version of browser emulation
used to display a web page. This allows you to view the web page as it would
be seen in an older version of Internet Explorer, a great tool for developing
web pages.

The following sections walk through the first three tools as they work in the
Microsoft Internet Explorer and Edge browsers. Other browsers offer similar fea-
tures but may require slightly different methods for using them. When you’ve
learned how to use the tools in one browser, it’s fairly easy to figure out how to
use them in the others.

The DOM Explorer
The DOM Explorer disassembles the web page HTML5 code into the separate DOM
elements that comprise the web page. It displays each element in a hierarchical
tree structure, showing the general layout of the web page. Embedded elements
are shown in the tree as child objects of the parent element, allowing you to col-
lapse entire sections down to view a single level of the tree hierarchy at a time.
Figure 5-2 demonstrates how this looks.

In some browsers, when you hover the mouse pointer over a DOM element, the
DOM Explorer highlights the area of the web page the DOM element generates.
This helps you identify which area on the web page is created by which HTML5
code. Unfortunately, Internet Explorer doesn’t support this feature, but Edge does.

FIGURE 5-2:
Using the DOM

Explorer to
 examine the

HTML in a
web page.

Tr
ou

bl
es

ho
ot

in
g

Ja
va

Sc
ri

pt
 P

ro
gr

am
s

CHAPTER 5 Troubleshooting JavaScript Programs 287

Instead of highlighting the elements in the web page, Internet Explorer displays
a layout diagram for the element to the right side of the DOM Explorer. The high-
lighted areas use separate colors to show the element text area, the padding area
around the text, the border area around the element, and the margin area defined
for the element.

Inside each area is a number showing how the area is sized in the HTML5 code.
What’s even cooler is that you can click the number of an area to edit it directly in
the DOM tree and then see how the change affects the layout of the elements on
the web page. This is a great way to help visualize and experiment with your web
page layout.

For position values that are calculated by the browser (such as percentages and
em units), the DOM Explorer displays both the configured value, as well as the
calculated value in pixels. This is yet another great tool for experimenting with
layout structures.

The DOM Explorer also allows you to make edits directly to the HTML5 code for
an element and then view how the changes affect the web page in real time. There
are three ways to do that:

 » Double-click directly on an element attribute in the DOM Explorer to change
its value.

 » Right-click an element and select Add Attribute to add a new attribute.

 » Right-click an element and select Edit as HTML to edit the element manually.

The DOM Explorer also tracks event handlers that your JavaScript code attaches
to HTML5 events, allowing you to detect when an event handler is misapplied or
didn’t get applied at all.

The Console
The Console displays messages received by the browser from the loaded web page.
There are three categories of messages that display in the Console:

 » Errors: Issues that cause the web page to not load or perform correctly, such
as invalid JavaScript code

 » Warnings: Issues that allow the web page to load, but that may cause
unexpected behavior

 » Information: Any noncritical information provided by the web page

When you click the Console tab, you see the interface shown in Figure 5-3.

288 BOOK 3 JavaScript

The first three icons at the top allow you to filter the messages to hide or dis-
play the error (the red X), warning (the yellow triangle), or information (the blue
circle) messages. They also show the count of each type of message generated
since the last clear of the Console. You can clear out the messages by clicking the
black X icon.

To watch the Console in action, let’s work on an example with some bad JavaScript
code and see what happens. Follow these steps:

1. Open the hover.html file created in Book 3, Chapter 4.

2. In the changeit() function code, change the getElementById() functions
to the incorrect getElementByid() name.

Note the lower-case i in the function name, a mistake that I make all too often
on my own!

3. Open the XAMPP Console and start the Apache web server.

4. Open Internet Explorer or Edge, and enter the following URL:

http://localhost:8080/hover.html

5. Press F12.

The Developer Tools window appears.

6. Click the Console tab.

7. Hover your mouse pointer over the p element content in the main web
page, and watch the messages that appear in the Console area.

FIGURE 5-3:
The Developer
Tools Console

window in
 Microsoft Edge.

Tr
ou

bl
es

ho
ot

in
g

Ja
va

Sc
ri

pt
 P

ro
gr

am
s

CHAPTER 5 Troubleshooting JavaScript Programs 289

While on the web page, all you see is that nothing happens, not much to help
with why that was. However, the Console shows the error messages that identify
exactly what went wrong. The misnamed getElementByid() functions generate
an error in the Console each time the mouse events trigger. The error messages
point you to the misnamed function and the line numbers they appear on in the
code. This is a huge help in figuring out just what went wrong when a dynamic
action doesn’t work correctly in your web pages.

Besides watching the error and warning messages that the web page generates on
its own, you can generate your own messages in the Console from your code. The
console.log() JavaScript function allows you to send messages directly to the
Console for viewing. Just add the line anywhere in your JavaScript code to display
useful information to the Console.

For example, one method I often use when working with events is to add a console.
log() function to identify each time an event is triggered in the JavaScript code:

function changeit(state) {

 if (state == "in") {

 console.log("mouseover triggered");

 document.getElementById("test").style.backgroundColor"red";

 } else if (state == "out") {

 console.log("mouseout triggered");

 document.getElementById("test").style.backgroundColor="yellow";

 }

 }

As the HTML5 code triggers each mouse event and passes control over to the
JavaScript changeit() function, the console.log() functions run based on just
which event triggered. Then you can just watch the Console area to tell just what’s
going on “behind the scenes” in your application!

Adding console.log() functions to the code is a great troubleshooting technique,
but be sure to remove them before taking your application live for site visitors! You
don’t want to needlessly clutter up their Console logs with troubleshooting data.

Below the Console window is a command line interface (CLI) that allows you to
enter JavaScript code to run inside the web page. Just type the JavaScript code you
want at the CLI prompt and press Enter or Return. You can use this to quickly
test variable values or override variable values to see how they affect the program
operation.

If you need to enter a long JavaScript statement (such as defining a function), click
the double up-arrow icon at the far-right side of the CLI. This expands the CLI
pane to display more lines of code. When you’re ready to submit the code, click
the green arrow to run it.

290 BOOK 3 JavaScript

The Console CLI also allows you to copy and paste code into it. You can use the CLI
to insert new functions, or test out additional code as the program is running. As
you enter new code, the browser interprets it on the fly, at the current point in the
application. If the application is paused by the Debugger tool, the code is executed
at that point in the program.

The Debugger
The Debugger allows you to watch your JavaScript code in action. This tool is a
powerful way to step through the JavaScript code in the application one statement
at a time and observe exactly what’s going on. The Debugger allows you to pause
the JavaScript code at any point in the program and view the following:

 » The path that caused the program to get where it is

 » The values of any variables that have been set by the code

 » How variables change at each statement after that point

To cause the JavaScript program to pause in the Debugger you need to set one or
more breakpoints in the code. The breakpoint signals to the browser to stop pro-
cessing code and enter the Debugger window.

When you open the Debugger tool window, you’ll see different sections appear in
the interface, as shown in Figure 5-4.

FIGURE 5-4:
The Debugger

interface in the
Microsoft Edge

Developer Tools.

Tr
ou

bl
es

ho
ot

in
g

Ja
va

Sc
ri

pt
 P

ro
gr

am
s

CHAPTER 5 Troubleshooting JavaScript Programs 291

The Debugger interface has three main sections:

 » Script pane: The script pane (on the left side) shows the web page HTML5
and JavaScript code. It indicates whether there are any breakpoints and, if the
program is paused, where in the code it’s paused.

 » Watch pane: The watch pane (on the right side at the top) shows a list of
variables that you’re watching and their current values.

 » Call Stack and Breakpoints pane: The Call Stack and Breakpoints pane (on
the right side at the bottom) displays the chain of function calls that led to the
current location in the code (the call stack), as well as the list of breakpoints
set in the program code.

Each pane provides information about the running JavaScript program and what’s
going on each time the Debugger pauses the program to examine the code in a
breakpoint.

There are three ways to set a breakpoint in your JavaScript program:

 » Click next to the line number in the script pane of the statement where you
want the program to pause.

 » Use the icons in the Breakpoints pane to add an XML or event breakpoint.
Event breakpoints pause the program when a specified event is triggered
(such as when you click the mouse button).

 » Add the debugger statement in your JavaScript code. Although this method is
handy, it can also be very dangerous. If you use this method, don’t forget to
remove the debugger statements from your code before going live with site
visitors.

Setting breakpoints inside the Debugger interface is the best method. Those
breakpoints are only temporary — they go away when you close out your browser
window.

When the Debugger pauses the program code at a breakpoint, you have a set of
icons available above the script pane that control how the browser executes the
code in debugger mode. Table 5-1 lists the icons that you can use.

292 BOOK 3 JavaScript

To go line-by-line through the JavaScript code, use the Step Into control icon. If
you come to a JavaScript function in the code (such as the getElementById() func-
tion), clicking the Step Into control icon will follow the code into the JavaScript
library that implements that function. This can get somewhat tedious at times,
because some JavaScript functions require hundreds or even thousands of lines of
code to implement, before you get back to your own code! To avoid that, use the
Step Over control icon. The Step Over control feature runs through the JavaScript
library code that implements the function, but then pauses again when control
gets back to your code.

When you’re done debugging the code, click the Continue control icon to return
back to the normal operation of the program.

To watch the Debugger tool in action, follow these steps:

1. Ensure that the Apache web server is running; if it isn’t, start it from the
XAMPP Console.

2. Open your Internet Explorer or Edge browser and enter the follow-
ing URL:

http://localhost:8080/hovertest.html

TABLE 5-1	 Debugger Control Icons
Icon Description

Continue Removes the code pause and continues with the next statement.

Break Exits from the Debugger mode after the next statement.

Step Into Proceeds to the next line of code. If the next line is a function, the Debugger follows
into the function code.

Step Over Proceeds to the next line of code. If the next line is a function, the Debugger runs the
function code, but not in debug mode.

Step Out Exits from the called function back to the main program.

Break on
New Worker

Exits the Debugger when a new web page is created.

Exception Control Sets how to handle exceptions as they’re thrown in the code.

Show
Next Statement

Lets you skip lines of code to execute in the program.

Run to Cursor Resumes execution of the code until the line in the code where the cursor is located.

Set Next Statement Lets you skip statements in a function without running them.

Tr
ou

bl
es

ho
ot

in
g

Ja
va

Sc
ri

pt
 P

ro
gr

am
s

CHAPTER 5 Troubleshooting JavaScript Programs 293

3. Press F12.

The Developer Tools window appears.

4. Click the Debugger tab.

5. In the script pane, click the line number for the first statement in the
changeit() function.

This should be the following line:

if (status == "in") {

6. Observe what happens in the Breakpoint pane.

A new breakpoint should be set, indicated by a red dot next to the line.

7. Click Add Watch in the Watches pane.

8. In the text box that appears, type state, to watch the state variable that’s
used in the changeit() function.

9. Reload the hovertest.html page in the browser window and then hover
the mouse pointer over the p element section on the web page.

When you hover the mouse pointer over the p element, that triggers the
onmouseover event, which calls the changeit() JavaScript function. The
Debugger detects the breakpoint that you set and pauses the program
execution, as shown in Figure 5-5.

FIGURE 5-5:
Pausing the code
at a breakpoint in

the Debugger.

294 BOOK 3 JavaScript

Notice the information you now have available at your fingertips. The orange arrow
in the Script pane indicates the statement at which the debugger is paused. In the
Watches pane, you can now see the state variable’s value as the program enters into
the changeit() function. In the Call Stack and Breakpoints pane, you can see just
how the program got to the changeit() function. It shows that the main program
thread triggered an onmouseout event, and it’s currently at the changeit() function.
In the Script pane, you see a pointer that shows just where in the code things stopped.

Follow these steps to continue on with the debugging process:

1. Click the Step Into icon to move on to the next line of code.

If you kept the console.log() statement in the code from the previous
example, it’ll take you into the JavaScript library to run that function. If you
prefer to avoid doing that, click the Step Over icon.

2. Continue clicking the Step Into icon to walk your way through the
changeit() function code in the web page.

Eventually the pointer will return to the p element defined in the hovertest.
html file.

3. Click the Continue icon in the controls.

The Debugger will again stop at the changeit() function. This is because it
detected that the mouse pointer is no longer in the p element section, so the
onmouseout event triggered.

4. Note the value of the state variable.

It should now be set to out, as shown in Figure 5-6.

FIGURE 5-6:
Stopping the

Debugger later
on in the code.

Tr
ou

bl
es

ho
ot

in
g

Ja
va

Sc
ri

pt
 P

ro
gr

am
s

CHAPTER 5 Troubleshooting JavaScript Programs 295

5. Click the Step Into icon, and watch how the if...else statement in the
code evaluates the state variable and jumps to the else section of the code.

6. Click the Continue icon to return the program back to running normally.

7. Disable the breakpoint that you previously set by clicking the check box
for the breakpoint in the Breakpoints pane.

8. Run the program again and watch what happens.

Now the Debugger won’t stop at the breakpoint.

9. Close the browser window to end the test.

With just a few simple commands, you have a full-fledged method of debugging
your dynamic web applications. That makes developing your web applications a
much easier task.

Working Around Errors
There may be times in your application where you don’t want things to come
to a grinding halt just because of some type of error in the program code. Often
 JavaScript programs rely on data supplied by the site visitor, and you wouldn’t
want an invalid data entry to cause your program to crash.

One method to prevent that is to intercept errors before they make it to the
browser and cause problems. This process is called “catching the errors.” With
catching the errors, the program detects when something is amiss and provides
some alternate code for the browser to run, bypassing the normal code that would
have produced the fatal error.

You do this in JavaScript with the try...catch statement. The try...catch
statement consists of two code blocks — the try code block to run and monitor
for errors, and the catch code block to run in case any errors are detected in the
try code block. Here’s the format for the try...catch statement:

try {

 code to test

} catch (err) {

 code to run if test fails

}

296 BOOK 3 JavaScript

The catch() function takes one parameter — a variable to place an Error object
that JavaScript generates to describe the error that occurred. The Error object has
two properties:

 » name: Returns the name of the error type

 » message: A string message describing the error in more detail

The error name identifies the type of error that occurred in the try code block.
There are six different error types supported in JavaScript, shown in Table 5-2.

Besides automatically detecting errors, you can create your own custom error
checks and messages by using the throw statement inside the try code block:

try {

 if (value < 1000) throw "The value is too small";

 if (value > 10000) throw "The value is too large";

} catch (err) {

 alert(err);

}

The string assigned to the throw statement is displayed as part of the Error object.
To demonstrate using the try...catch method to your JavaScript code, let’s work
out a simple exercise. Follow these steps to create the demo:

1. Open your favorite text editor, program editor, or IDE package.

2. Type the following code:

<!DOCTYPE html>

<html>

<head>

TABLE 5-2	 JavaScript Error Types
Error Description

EvalError An eval() function has produced an error.

RangeError A value out of range has occurred.

ReferenceError An invalid location was referenced in the code.

SyntaxError Invalid JavaScript code was detected.

TypeError An invalid data type was used.

URIError An error in the encodeURI() function was detected.

Tr
ou

bl
es

ho
ot

in
g

Ja
va

Sc
ri

pt
 P

ro
gr

am
s

CHAPTER 5 Troubleshooting JavaScript Programs 297

<title>Catching Errors Test</title>

<style>

 fieldset {

 width: 450px;

 }

 label, input {

 margin: 10px;

 }

</style>

<script>

function calculate() {

 var games, scores, array, total, average, output;

 games = document.getElementById("games").value;

 scores = document.getElementById("scores").value;

 array = scores.split(',');

 total = 0;

 for(i = 0; i < array.length; i++) {
 total = total + parseInt(array[i]);
 }

 try {

 if (games == 0) {

 throw "Please enter a valid number of games";

 } else if (games == "") {

 throw "Please enter a valid number of games";

 } else if (isNaN(games)) {

 throw "Please enter a valid number of games";

 }

 average = total / games;

 output = "The average is " + average;
 document.getElementById("result").innerHTML = output;

 } catch (err) {

 document.getElementById("result").innerHTML = err;

 }

}

</script>

</head>

<body>

<fieldset>

<legend>Bowling Calculator</legend>

<label>Enter number of games bowled</label>

<input type="text" id="games" size="3">

<label>Enter scores, separated by commas</label>

<input type="text" id="scores" size="20">

<button onclick="calculate()">

298 BOOK 3 JavaScript

Calculate average

</button>

<p id="result"></p>

</fieldset>

</body>

</html>

3. Save the file as catchtest.html in the DocumentRoot folder of the Apache
web server.

That’s c:\xampp\htdocs for XAMPP on Windows, or /Applications/XAMPP/
htdocs for XAMPP on macOS.

4. Open the XAMPP Control Panel and start the Apache web server.

5. Open your browser, and enter the following URL:

http://localhost:8080/catchtest.html

You may need to use a different port in the URL for your web server.

6. Enter 3 for the number of games and 100,105,100 for the scores.

7. Click the Calculate Average button to view the results.

8. Change the number of games to an invalid value — enter 0 or some text,
or just leave the field empty.

9. Click the Calculate Average button and see what happens.

You should see the text from the appropriate throw statement that caught the
error appear.

10. Close the browser, and shut down the Apache web server.

When you enter an invalid value for the number of games, the if...then condi-
tion checks will detect it, and use the throw statement to intercept the error and
trigger the catch code block, displaying the message defined in the throw state-
ment (see Figure 5-7).

There’s one more piece to the try...catch statement that you can use. The
finally statement allows you to enter a block of code that gets executed no mat-
ter what happens in the try code block:

try {

 code to test

} catch (error) {

 code to run if errors

} finally {

 final code always runs

}

Tr
ou

bl
es

ho
ot

in
g

Ja
va

Sc
ri

pt
 P

ro
gr

am
s

CHAPTER 5 Troubleshooting JavaScript Programs 299

Any code you place in the finally code block runs at all times. If the code in the
try code block is successful, the JavaScript interpreter jumps to the finally code
block and runs that code. If the code in the try code block fails, the JavaScript
interpreter runs the code in the catch code block, and then runs the code in the
finally code block. This is a good way to have “cleanup” code for the function.

FIGURE 5-7:
Catching an

invalid data entry
using the try...
catch statement.

4PHP

Contents at a Glance
CHAPTER 1: Understanding PHP Basics . 303

Seeing the Benefits of PHP . 303
Understanding How to Use PHP . 305
Working with PHP Variables . 310
Using PHP Operators . 317
Including Files . 320

CHAPTER 2: PHP Flow Control . 325
Using Logic Control . 325
Looping . 331
Building Your Own Functions . 336
Working with Event-Driven PHP . 339

CHAPTER 3: PHP Libraries . 349
How PHP Uses Libraries . 349
Text Functions . 354
Math Functions . 361
Date and Time Functions . 365
Image-Handling Functions . 369

CHAPTER 4: Considering PHP Security . 375
Exploring PHP Vulnerabilities . 375
PHP Vulnerability Solutions . 384

CHAPTER 5: Object-Oriented PHP Programming 395
Understanding the Basics of Object-Oriented Programming 395
Using Magic Class Methods . 401
Loading Classes . 409
Extending Classes . 414

CHAPTER 6: Sessions and Carts . 419
Storing Persistent Data . 419
PHP and Cookies . 424
PHP and Sessions . 430
Shopping Carts . 436

CHAPTER 1 Understanding PHP Basics 303

Understanding PHP
Basics

Welcome to the PHP minibook! If you’ve been following along through the
previous minibooks, you’ve seen how to create web page content using
HTML5, how to style and position it using CSS3, and how to add some

dynamic features to your web pages using JavaScript. This minibook examines the
next piece to dynamic web applications — using a server-side programming lan-
guage to make your web applications even more dynamic. As the title of the book
suggests, the server-side programming language that I discuss is PHP, one of the
most popular server-side programming languages in use on the Internet today!

Seeing the Benefits of PHP
So far, you’ve already seen that JavaScript is a popular client-side programming
language and that it has the ability to change the content and style of a web page
dynamically. One question you may be asking is, “Why do I need a server-side
programming language, too?” This section examines what your web applications
will gain by adding PHP to the mix and what you can do when you incorporate PHP
code in your applications.

Chapter 1

IN THIS CHAPTER

 » Understanding PHP

 » Using PHP in HTML5 programs

 » Storing data in PHP programs

 » Including PHP code in multiple
programs

304 BOOK 4 PHP

A centralized programming language
One of the downsides to using a client-side programming language is that your
code is dependent on how each individual browser runs it. Great strides have been
made in the standardization of JavaScript, but each browser still has its own set of
quirks when running JavaScript code, as well as its own set of libraries that offers
different features, making it impossible to know just how your JavaScript code
will run in all situations.

Unlike that environment, server-side PHP programs run on the same server that
hosts your web pages, so every site visitor who accesses your web pages runs the
PHP code on the same server, using the same set of library features. You know
exactly how your application code will run and exactly what it will produce for all
your website visitors.

Another added benefit of using PHP code in your web pages is the ability to con-
trol the actual PHP server itself. Because all the PHP code in your web pages runs
from the same location, you can customize the feature settings in the PHP server
to your specific environment. This allows you to utilize just the libraries you need
or set memory usage just how you want, giving you some control over the perfor-
mance of your web applications.

Book 1, Chapter 2, shows some of the configuration settings available in the PHP
server and how you can change them to customize your PHP environment.

Centralized data management
These days, data rules the world. Just about every web application requires some
type of data to run. Whether it’s displaying news stories, posting blog entries, or
just tracking your bowling team scores, you need some type of data to use in your
dynamic web application.

When you use data, you need some method for storing it. A content management
system (CMS) provides an interface to track data in a single repository, allowing
you to create, read, update, and delete data records freely. The CMS package is
often installed as part of the web server environment and often utilizes a database
server that specializes in quickly storing and retrieving data records.

By using PHP, you can access the data in your CMS package directly from the server.
That usually means faster response times, as opposed to your individual site visi-
tors accessing the CMS server from their locations. It also means more control over
how your application accesses and displays the data. The only data your site visitors
can see is what your application presents to them. All your CMS access information
stays hidden on the server — none of the code to access the data is downloaded to
the client browsers. This is a also huge benefit for security reasons.

U
nd

er
st

an
di

ng
 P

H
P

Ba
si

cs

CHAPTER 1 Understanding PHP Basics 305

Understanding How to Use PHP
After you decide to incorporate PHP into your web applications, you need to know
just how to do that. This section walks through the basics of adding PHP code to
your web pages and how to get output from your PHP programs to appear in your
web pages as they display in your site visitors’ browsers.

Embedding PHP code
Just as with JavaScript, you embed PHP code directly into the HTML5 code that
creates the web page. As you can probably guess, you need a way to identify the
embedded PHP code, and that method is to use tags.

There are actually four different ways to tag PHP code in the HTML5 document.
The most common method is to use the special <?php and ?> tag combination.
Just place the PHP code you need to embed between the opening <?php tag and
the closing ?> tag, like this:

<!DOCTYPE html>

<html>

<body>

<?php

 php code

?>

</body>

</html>

You can place the PHP tags anywhere in the HTML5 code — they don’t need to be
in the body element. You can have as many HTML5 elements that you need out-
side the PHP code area to provide supporting content on the web page, but you
can’t place HTML5 elements inside the PHP code area. Only PHP code can reside
inside the PHP code area.

The <?php tag is the most common way to identify PHP code, but it’s not the only
way. Another method is to use the <script> HTML5 tag:

<!DOCTYPE html>

<html>

<body>

<script language="php">

 php code

</script>

</body>

</html>

306 BOOK 4 PHP

This looks very similar to what you use to embed JavaScript code into HTML5
code, which could be good or bad. Just remember to include the language attrib-
ute in the tag and identify the code as PHP code. Using the same <script> tags
to embed both JavaScript and PHP code can be a bit confusing, which is why the
<?php tag has become so popular.

The third type of PHP tag is called the short open tag. It uses <? as the opening tag,
instead of the full <?php tag. For this tag method to work, though, the PHP server
must have the short_open_tag setting enabled in its configuration file. The short
open tag saves some typing, but it can get confusing as you look through the pro-
gram code.

Finally, the fourth type of PHP tag is the <% opening tag. This is called the ASP style
tag because this is the same tag used when programming with the Microsoft ASP.
NET family of server-side programming languages. If you’re already comfortable
with using ASP.NET programming, you can use this style of tag for PHP coding as
well. Similar to the short open tag, you must enable the asp_tags setting in the
PHP server configuration file to use this method.

Identifying PHP pages
Because PHP is a server-side programming language, the PHP processor that runs
the PHP code is located on the server — usually the same physical server as the
web server. To process the embedded PHP code, your web page must pass your
HTML5 document to the PHP server on its way to the site visitor who requested it.

The web server must be able to detect when a web page contains embedded PHP
code and when it doesn’t. If the web page contains PHP code, the web server must
pass the entire HTML5 document to the PHP server for processing. We don’t want
the web server to pass all HTML5 documents to the PHP server, because that
would slow down processing web pages that don’t contain embedded PHP code.
The web server must know when it has to send an HTML5 file to the PHP server
for processing. You control that by using file extensions.

When the Apache web server has the PHP module installed, there’s a directive in
the main httpd.conf configuration file identifying PHP programs that need to be
sent to the PHP server for processing. That directive looks like this:

AddHandler application/x-httpd-php .php

This tells the Apache web server to send any files that site visitors request that end
with the .php file extension to the PHP server. This way, you can identify any web
pages that contain embedded PHP code by using the .php file extension instead of
the standard .html file extension. Figure 1-1 shows this process.

U
nd

er
st

an
di

ng
 P

H
P

Ba
si

cs

CHAPTER 1 Understanding PHP Basics 307

Using the correct file extension for PHP files is crucial, because if you embed any
PHP code into a file with an .html file extension, the PHP code won’t get pro-
cessed; instead, it will appear on the web page as text.

When working with PHP code, you must run the web page through the web server
so that it gets processed by the PHP server. You can’t just double-click a .php file
to open it in your browser — you must open your browser and use the http://
URL to access the file via the web server.

Displaying output
As the PHP server reads the code in the file that the web server sends it, it passes
any HTML5 code directly on to the client browser that requested the file and pro-
cesses any PHP code embedded in the document. As it processes the PHP code,
you’ll want to be able to dynamically add content to the web page (after all, that’s
what you’re here for). You do that using the echo statement.

The echo statement injects text into the HTML5 data stream that’s sent to the
client browser. The data appears to the client browser just as if it came from the
HTML5 document — it has no idea that the PHP server dynamically generated the
content.

To use the echo statement, you just specify the string value that you want to insert
into the HTML5 output:

echo "this is my output";

FIGURE 1-1:
Processing PHP

code in a
web page.

308 BOOK 4 PHP

In PHP, function names are not case sensitive, but it’s fairly standard convention
to use lowercase for function names. Also in PHP, all statements must end with
a semicolon. If you forget the semicolon, you’ll generate a parse error from the
PHP processor.

Follow these steps to test out embedding PHP in an HTML5 document:

1. Open your favorite text editor, program editor, or integrated develop-
ment environment (IDE) package.

2. Type the following code:

<!DOCTYPE html>

<html>

<body>

<h1>This is a test of PHP code</h1>

<?php

 echo "<p>This text was dynamically generated!</p>";

?>

<h1>This is the end of the test</h1>

</body>

</html>

3. Save the file as phptest.php in the DocumentRoot folder of your web server.

For XAMPP on Windows, use the c:\xampp\htdocs folder; for XAMPP on
macOS, use /Applications/XAMPP/htdocs.

4. Open the XAMPP Control Panel and start the Apache web server.

5. Open your browser and enter the following URL:

http://localhost:8080/phptest.php

You may need to use a different TCP port based on your Apache web server
setting.

6. Close your browser when you’re done.

When you run the phptest.php file in your browser, the web page should appear
as shown in Figure 1-2.

U
nd

er
st

an
di

ng
 P

H
P

Ba
si

cs

CHAPTER 1 Understanding PHP Basics 309

The p element section appears just as if you had typed it directly in the HTML5
code. The PHP server injected it into the HTML5 code, and the browser added it to
the Document Object Model (DOM) tree just as normal. It’s also important to note
that, in this demonstration, I embedded standard HTML5 tags into the output
from the echo statement. Everything that’s inside the string value is sent to the
client browser, including any HTML5 elements that you specify.

If you see the PHP code appear in your web page, that means the PHP server didn’t
process the PHP code. Check to make sure you don’t have a typo in the opening
<?php tag (note that there are no spaces in the tag) and that the file uses the .php
file extension.

Handling new-line characters
There is one oddity that you may have noticed when running the phptest.php
demo program. If you use the Developer Tools for your browser (see Book 3,
 Chapter 5) and look at the HTML5 code generated, it may look a little odd, as
shown in Figure 1-3.

Instead of the p element being on a separate line in the code, it got pushed onto
the same line as the second h1 element.

FIGURE 1-2:
Output generated

by the phptest.
php program.

310 BOOK 4 PHP

The echo statement in PHP doesn’t add a new-line character at the end of the out-
put. Because there aren’t any new-line characters, any content that you display
using the echo statement in PHP appears on the same line in the HTML5 code.

The HTML5 standard ignores any white space between elements in the document,
so the fact that the p element is on the same line as the h1 element doesn’t effect
the output that appears on the web page at all. However, having two elements on
the same line can make troubleshooting HTML5 code generated by PHP somewhat
complicated. That’s especially true as you use PHP to create entire web pages!

To solve this problem, many PHP developers like to add their own new-line
 characters to the ends of all echo statements in the code, like this:

echo "<p>This text was dynamically generated!</p>\n";

The \n new-line character doesn’t change the appearance of anything on the web
page as it appears in the browser, but it does separate the p element from the fol-
lowing h1 element when you look at the HTML5 code using the browser Developer
Tools features. It adds some extra typing to your development work, but it can save
you lots of time trying to troubleshoot HTML5 code issues in your applications!

Working with PHP Variables
The key to dynamic web applications is working with data. Just like any other
programming language, PHP allows you to use variables to store data in your
programs. Variables are placeholders that you assign values to throughout the

FIGURE 1-3:
Viewing the

HTML5 code
generated by the

phptest.php
program.

U
nd

er
st

an
di

ng
 P

H
P

Ba
si

cs

CHAPTER 1 Understanding PHP Basics 311

duration of the program. When the program references the variable, it represents
the actual value that the program last assigned to it.

This section walks through what you’ll need to know to use variables in PHP.

Declaring variables
In PHP, you identify variables with a leading dollar sign ($) in front of the vari-
able name. You must start a variable name with either a letter or an underscore
character (_), and it can contain only letters, numbers, and underscores (the vari-
able name can’t contain any spaces or other special characters). Here are some
examples of valid PHP variable names:

$test

$Test1

$_another_test

Just as in JavaScript, PHP variable names are case-sensitive, so be careful when
you reference variables in your code. The variable name $Test is different from
$test. Case-sensitivity causes all sorts of headaches when trying to troubleshoot
PHP code.

Unlike with JavaScript, with PHP, you don’t declare variables with a var
statement — you just use them. However, the first time you use a variable must
be within an assign statement, assigning a value to the variable:

$test = "This is a test string";

The assignment statement assigns the value specified on the right side of
the equal sign to the variable specified on the left side. As with all other PHP
statements, don’t forget the semicolon at the end of assignment statements!

After you assign a value to a variable, you can use it in your application:

$value1 = 10;

$value2 = 20;

$result = $value1 + $value2;

If you try using the third statement before assigning values to the $value1 or
$value2 variables, you’ll get a warning message from PHP about using a value
with no assigned value. However, by default, PHP will assume the unassigned
variables contain a value of 0.

312 BOOK 4 PHP

As you can tell from these examples, PHP allows you to store different data types
in variables. The next section takes a closer look at that.

Seeing which data types PHP supports
Just as with JavaScript, PHP supports the following data types:

 » Integer: Stores whole-number values

 » Float: Also called floating-point or double; stores real numbers

 » Boolean: Stores a true or false value

 » String: Stores a series (string) of characters

 » Array: Stores multiple values referenced by the same variable name

 » Object: Stores instances of classes

 » Reference: Stores a pointer to a complex data type

In PHP, just as in JavaScript, a single variable can hold any type of data at any time
(PHP doesn’t enforce strict data typing). Changing the data type stored in a vari-
able can get confusing, and I strongly recommend sticking with one data type per
variable name in your programs. Trust me, it’ll make your life a lot easier!

Follow these steps to test out using different data types in PHP code:

1. Open your editor and type the following code:

<!DOCTYPE>

<html>

<head>

<title>Testing PHP Data Types</title>

</head>

<body>

<h1>PHP Data Type Test</h1>

<?php

$name = "Rich";

$age = 100;

$salary = 575.25;

echo "<h2>Information for $name</h2>\n";

echo "Age: $age
\n";

echo "Salary: $$salary\n";

?>

U
nd

er
st

an
di

ng
 P

H
P

Ba
si

cs

CHAPTER 1 Understanding PHP Basics 313

<h1>This is the end of the PHP test</h1>

</body>

</html>

2. Save the file as phpdatatest.php in the DocumentRoot folder for your
web server.

3. Ensure that the web server is running, open your browser, and enter the
following URL:

http://localhost:8080/phpdatatest.php

4. Close the browser window when you’re done.

When you run the phpdatatest.php program, you should see the output as shown
in Figure 1-4.

Let’s look at exactly what’s going on in this PHP program. First, the code assigns
values for three variables:

$name = "Rich";

$age = 100;

$salary = 575.25;

FIGURE 1-4:
Output from the
phpdatatest.
php program.

314 BOOK 4 PHP

The first statement assigns a string value to the $name variable. To assign a string
value, you must enclose the data in either single or double quotes. These mark the
beginning and end of the string value.

After assigning the three variable values, the code then uses three echo state-
ments to display the variable values:

echo "<h2>Information for $name</h2>\n";

echo "Age: $age
\n";

echo "Salary: $$salary\n";

Unlike many other programming languages, PHP allows you to just use a vari-
able directly within a string value in the echo statement. However, how the echo
statement handles the variable depends on the type of quotes you use to define the
string (again with the quotes).

If you use double quotes to define the output string, PHP will display the variable
value in the output. If you use single quotes to define the output string, PHP will
display the variable name in the output:

echo "The variable value is $age";

echo 'The variable name is $age';

PHP AND QUOTES
You can use either single or double quotes to define a string value in PHP. They're inter-
changeable, but there are times when you'll want to use one over the other. Things
can get somewhat confusing when you have to use quotes inside the string value itself.
When you know you have to use one type of quote in the data, just use the other type
to define the string value:

$test1 = "This'll work just fine in PHP";

$test2 = 'Rich says "this works, too" in PHP';

Where things get tricky is when you need to use both types of quotes inside the data
value. To do that, you must escape the quote type that you use to define the string
value. Use the backslash to identify the quotes in the data:

$test3 = "Rich says \"This'll work, too\" in PHP";

Be careful when working with quotes in data — it’s easy to miss them and cause errors
in your PHP code.

U
nd

er
st

an
di

ng
 P

H
P

Ba
si

cs

CHAPTER 1 Understanding PHP Basics 315

That’s extremely versatile, but it can be somewhat confusing, and it takes some
time getting used to as you code your PHP programs.

The last echo statement in the example code also does something rather odd: It
uses two dollar signs in front of the $salary variable. That doesn’t change any-
thing for the variable — it just displays a dollar sign in front of the value contained
in the $salary variable. This shows that PHP doesn’t get confused when embed-
ding variables inside the output string. You don’t need to place spaces before the
variable names. Again, though, this can get confusing, and you should take care
when embedding variables in your output.

There is one oddity with using single quotes for string values in PHP. For some
reason, PHP doesn’t recognize the \n newline character when you use single
quotes. For that reason, I tend to stick with using double quotes for my string
values.

Grouping data values with array variables
Array variables allow you to group related data values together in a list using a
single variable name. You can then either reference the values as a whole by ref-
erencing the variable name or handle each data value individually within the array
by referencing its place in the list.

PHP supports two types of arrays: numeric and associative. The following sections
cover these array types.

Numeric
The standard type of array variable is the numeric array. With the numeric array,
PHP indexes each value you store in the array with an integer value, starting at 0
for the first item in the array list.

The way to define an array is to use the PHP array() function in an assignment
statement:

$myscores = array(100, 120, 115);

Just because the array is a numeric array, that doesn’t mean you’re restricted to
storing only numeric values:

$myfamily = array("Rich", "Barbara", "Katie", "Jessica");

316 BOOK 4 PHP

Starting in PHP version 5.4, you can also define an array using square brackets
instead of the array() function:

$myscores = [110, 120, 115];

PHP references each value in the array using a positional number within square
brackets after the variable name. The first element in the array is at position 0, the
second at position 1, and so on.

For example, to retrieve the first value stored in the array, you’d use
$myfamily[0], which would return the value Rich.

Associative
The associative array variable is similar to what other programming languages call
a “dictionary.” Instead of using numeric indexes, it assigns a string key value to
individual values in the list. You use the special => assignment operator to do that
when you define the array:

$favs = array("fruit" => "banana", "veggie" => "carrot");

This array definition assigns the key value of fruit to the data value banana, and
the key value veggie to the data value carrot. With associative arrays, to refer-
ence a data value you must specify the key value in the square brackets:

$favs["fruit"]

There is one thing to watch out for, though, when using associative array vari-
ables in your PHP code. For some reason, the echo statement has a hard time
detecting associative array variables, so it needs some help from you.

When you use an associative array variable in an echo statement, it’s a good idea
to enclose it in braces, like this:

echo "My favorite fruit is {$favs['fruit']}\n";

This separates out the associative array variable from the string, so the echo
statement can properly process it. Also, notice that the problem with quotes pops
up when using associative array variables inside the echo statement. Because you
want the output to show the value of the associative array variable, you need to
use double quotes for the echo statement string. That means you must use single
quotes around the associative array variable key.

U
nd

er
st

an
di

ng
 P

H
P

Ba
si

cs

CHAPTER 1 Understanding PHP Basics 317

Using PHP Operators
Now that you know how to store data in variables and display those values on a
web page, it’s time to take a look at how to dynamically alter the values. The core
of any programming language is the ability to let the computer system crunch
your data and then display the results for you. To do that, you need data operators.
This section covers the operators you’ll run into when using arithmetic and string
operations in your PHP code.

Arithmetic operators
Arithmetic operators provide the basic mathematical functions that you’re used to
seeing on your calculator, directly within your PHP programs. You can perform all
the standard calculations shown in Table 1-1 in your PHP programs.

Arithmetic operators are normally used in an assignment statement to perform
the calculations:

$value1 = 10;

$value2 = 20;

$result = $value1 + $value2;
echo "The result is $result\n";

The first two lines assign values to the two values used in the arithmetic opera-
tion. If you try to use a variable that hasn’t been assigned a value in an arithmetic
operation, you’ll get a warning from PHP.

The third line is where you use the arithmetic operation on the two values. If
you’ve never done programming before, this statement may look a little odd. Don’t
think of it as a mathematical equation. The equal sign is still acting to perform

TABLE 1-1	 PHP Arithmetic Operators
Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

318 BOOK 4 PHP

the assignment in PHP. The PHP server first evaluates the arithmetic operation on
the right side of the equal sign and then assigns the result to the $result variable
specified on the left side.

You can use both integer and float data type values in your arithmetic operations.
However, float data type values need a little explaining here.

You can define a float value in one of three ways:

$float1 = 3.14159;

$float2 = 2.3e10;

$float3 = 5E-10;

The e and E symbols represent an exponential value applied to the value specified.
You can use very large and very small float numbers, but be careful because the
precision that PHP uses is somewhat limited, based on the server system. Don’t be
surprised if you store the value 3.0 in a variable and then later on retrieve it and it
shows as 3.00001. Extra care is needed when working with float values.

Arithmetic shortcuts
There are a few different shortcuts you can use when implementing arithmetic
operators in your PHP code. A common function in programming code is to per-
form a mathematical operation on a value stored in a variable and then store the
result back in the same variable, like this:

$counter = $counter + 1;

This code adds 1 to the value currently stored in the $counter variable and then
saves the result back in the $counter variable. PHP provides a handy shortcut
method for doing this:

$counter += 1;

This code accomplishes the exact same thing, but in a shorter form. You can use
the same shortcut with any type of arithmetic operator:

$total *= 1.10;

This example multiplies the value stored in the $total variable by 1.10 and stores
the result back in the $total variable. You can also use variables on the right side
of the assignment operation:

$total *= $taxrate;

U
nd

er
st

an
di

ng
 P

H
P

Ba
si

cs

CHAPTER 1 Understanding PHP Basics 319

This is the same as typing the following:

$total = $total * $taxrate;

That can really save some typing for you!

Two other types of arithmetic shortcuts are the incrementor and decrementor oper-
ators. The incrementor operator adds 1 to a variable’s value:

$counter++;

The decrementor operator subtracts 1 from the variable’s value:

$counter--;

Now that’s really saving some typing!

The arithmetic shortcut operators assume there’s already a value stored in the
variable before the operation. If there isn’t, PHP will generate a warning message,
telling you that it assumes the initial value is 0. It’s always a good idea to initialize
a variable to a known value before trying to use it in any arithmetic operations.

Boolean operators
Besides the standard arithmetic operators, PHP supports Boolean operators for
logical operations with data. Boolean math allows you to work with TRUE and
FALSE conditions in your programs. The Boolean operators test whether two val-
ues are both TRUE, both FALSE, or one is TRUE and the other is FALSE. Table 1-2
shows the Boolean operators supported by PHP.

TABLE 1-2	 PHP Boolean Operators
Operator Description

and logical AND

&& logical AND

or logical OR

|| logical OR

xor logical XOR

! logical NOT

320 BOOK 4 PHP

Notice that PHP supports two forms for the AND and OR logical operations — both
the symbols and the names. There’s no preference as to which method to use, so
feel free to use the method you’re most comfortable with.

These operators come in handy when you need to evaluate two separate conditions
at the same time:

if (($age > 50) and ($gender == "F"))

This can help to simplify the code in your programs!

String operators
When you think of text string values, you don’t necessarily think of arithmetic
operations, but PHP does include a string operator that comes in handy when
working with string values.

The concatenation operator allows you to “add” two string values together to cre-
ate a single string value. Basically, the concatenation operator appends the second
string to the end of the first string.

The concatenation operator in PHP is the period:

$string1 = "This is ";

$string2 = "a test";

$result = $string1 . $string2;

The result stored in the $result variable will be the string This is a test. Note
that the concatenation operator doesn’t add any spaces either before or after the
text it concatenates, so it’s up to you to do that if you need the space!

Including Files
One feature of PHP that many web developers love is the ability to create and use
include files. Include files (sometimes referred to as server-side includes) allow you
to store HTML5 and PHP code in one file and then reference that file in another
web page file. There are a couple of ways to do that in PHP.

The include() function
The include() function allows you to include the contents of one web page
within another web page simply by referencing a filename on the server. The PHP

U
nd

er
st

an
di

ng
 P

H
P

Ba
si

cs

CHAPTER 1 Understanding PHP Basics 321

processor includes all the code contained within the included file, both HTML5
and PHP, directly into the PHP code of the main file, exactly where you place the
include() function. It’s just as if you had typed in all the lines of code from the
include file yourself into the main file!

Developers often use the include() function to create standard header or footer
sections on all the web pages in an application. Instead of having to add the same
header or footer code to every web page in the application, you just save the header
code in one file and the footer code in another file, and then use the include()
function to include the header and footer files into each web page code.

The format of the include() function is simple:

include(filename);

You just replace filename with the actual name of the file you need to include in
the program code.

Follow these steps to test out using an include file in a web page:

1. Open your editor and type the following code:

<h1>This is a test header</h1>

<?php

 echo "<p>This is the header text</p>\n";

?>

2. Save the file as myinclude.inc.php in the DocumentRoot folder for your
web server.

3. Open your editor to a new document and type the following code:

<!DOCTYPE html>

<html>

<head>

<title>Testing PHP includes</title>

</head>

<body>

<header>

<?php include("myinclude.inc.php"); ?>

</header>

322 BOOK 4 PHP

<section>

<h2>This is the body of the main web page</h2>

</section>

</body>

</html>

4. Save the file as mymain.php in the DocumentRoot folder for your web
server.

5. Ensure that the web server is running, and then open your browser and
enter the following URL:

http://localhost:8080/mymain.php

6. Close the browser when you’re done.

You should see the output as shown in Figure 1-5.

If you view the HTML5 code in your browser’s Developer Tools, the output appears
as a single HTML5 document. The browser is unaware that the code came from
two separate files on the server, and your site visitors will have no idea that you
cheated when creating all your web pages!

FIGURE 1-5:
The results of

the mymain.php
program.

U
nd

er
st

an
di

ng
 P

H
P

Ba
si

cs

CHAPTER 1 Understanding PHP Basics 323

The filename you specify in the include() function can use any file extension —
it’s not required to use .php, because the include() function includes it into
the main file for processing. However, it’s become common to use the .inc.php
file extension to identify include files and to separate them out from main PHP
files. You can also use either an absolute or relative path name to reference the
filename. Because the PHP server is accessing the file as a file and not as a web
document, you can’t use the http:// URL here — only a file path. Also, your web
server must have access to read the file on the server.

The require() function
There is one limitation to the include() function that may cause problems for
you. If PHP is unable to find the file you reference, it’ll produce a warning, but the
PHP server will continue to process the rest of the program code. That may have
detrimental effects on your program!

There may be times where you don’t want the PHP server to continue on process-
ing code if a crucial include file is missing from the server. Instead, you may want
the program to stop immediately and produce an error message instead of just a
warning. This is where the require() function comes in.

The require() function works exactly like the include() function, except for one
difference: It forces the PHP server to stop processing code if the include file fails
to load.

To test this out, follow these steps:

1. Open the mymain.php code from the previous example into your editor.

2. Change the include() function line to this:

require("mybadinclude.inc.php");

3. Save the file as mybadmain.php in the DocumentRoot folder for your web
server.

4. Ensure that the web server is still running and then open your browser
and go to the following URL:

http://localhost:8080/mybadmain.php

5. Close the browser and shut down the web server when you’re done.

When you run the mybadmain.php program, you may or may not see an error
 message on your web page, as shown in Figure 1-6.

324 BOOK 4 PHP

If you have the display_errors setting enabled in your PHP server configuration
file, you’ll see the error message. None of the HTML5 code from the main program
code appears on the web page, because the PHP server stopped processing code
after the require() function failed.

FIGURE 1-6:
The output from
the mybadmain.

php program.

CHAPTER 2 PHP Flow Control 325

PHP Flow Control

In the preceding chapter, I cover the basics of creating and running PHP
 programs. I show you how to use variables to hold data, but you don’t really
do much with them to test the data and perform operations. In this chapter, I

walk through how to use the PHP conditional tests to control how your program
behaves, as well as show how to loop through code to perform multiple iterations.
In case you have code that you find yourself using frequently, I show how you can
convert them into functions to share among your programs. Finally, I cover how
to use PHP code in your event-driven web applications to add to your dynamic
web applications.

Using Logic Control
Only having variables and echo statements in your PHP program would be pretty
boring. You need to give your programs some intelligence so that they can make
decisions based on what’s happening in the application and display different sets
of content based on those decisions.

Every programming language has methods for controlling the order the program
handles statements, called the program flow, and PHP is no different. This section
walks through the basics of controlling program flow in your PHP programs.

Chapter 2

IN THIS CHAPTER

 » Adding conditional tests

 » Looping through code

 » Building functions

 » Working with event-driven
programming

326 BOOK 4 PHP

The if statement
The if statement controls which statements PHP should run in the program
based on conditions. You use if statements in your everyday life (for example, if
it’s raining, then you’ll bring an umbrella). You apply the same logic to your PHP
programs.

The basic format for the if statement is:

if (condition)

 PHP statement to run

PHP evaluates the condition defined inside the parentheses to determine whether
it should run the specified PHP statement that appears immediately after the if
statement. The condition uses a special PHP expression called the comparison
operator, which it uses to compare two values. If the comparison evaluates to a
Boolean TRUE value, PHP runs the statement listed after the if statement. If the
comparison evaluates to a Boolean FALSE value, PHP skips the statement.

This may sound confusing, but it’s not all that hard when you get used to the for-
mat. Here’s an example of a simple if statement:

if ($age > 21)

 echo "Sorry, you are too old to play";

The condition inside the parentheses checks if the value stored in the variable
named $age is greater than 21. If it is, the condition evaluates to a TRUE value and
PHP runs the echo statement. If it isn’t, the condition evaluates to a FALSE value
and PHP skips the echo statement and moves on.

There are quite a few comparison operators that you have available to use in
PHP. Table 2-1 shows the comparison operators available.

Notice that the comparison operator used to check if two values are equal is the
double equal sign, not a single equal sign. Forgetting that small detail causes all
sorts of annoying errors in your PHP code because the equal sign performs an
assignment operation, which always returns a TRUE value (been there, done that).

The triple equal sign not only compares the value of the variables, but also checks
to make sure the variables contain the same data types. For example, a Boolean
data type of TRUE will match against an integer data type of 1 using the double
equal, but not the triple equal.

PH
P

Fl
ow

 C
on

tr
ol

CHAPTER 2 PHP Flow Control 327

If you need to control more than just a single statement using the if condition,
group the statements using braces:

if (condition) {

 statement1

 statement2

 statement3

}

You can have as many PHP statements contained within the group block as
 necessary — they’ll all be controlled by the single condition in the if statement
line. Here’s an example:

if ($price > 50) {

 $tax = $price * .07;

 $shipping = 10;

 $total = $price + $tax + $shipping;
}

In this example, the entire group of statements will only be run by PHP if the
$price variable value is greater than 50.

TABLE 2-1	 PHP Comparison Operators
Operator Description

== Equal to the same value

=== Equal to the same value, and they’re the same data type

!= Not equal to the same value

<> Not equal to the same value

!== Not equal to the same value, or they aren’t the same data type

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

328 BOOK 4 PHP

The else statement
The if statement has a cousin, called the else statement. The else statement
allows you to provide an alternative group of statements to run if the condition in
the if statement evaluates to a FALSE value:

if (condition) {

 PHP statements to run if TRUE

} else {

 PHP statements to run if FALSE

}

This gives you total control over what PHP statements are run in any condition!

The elseif statement
You can string if and else statements together, but that uses a new statement in
place of the else statement, called the elseif statement (yes, that’s else and if
as one word). An elseif statement looks like this:

if (condition1){

 PHP statements to run if condition1 is TRUE

} elseif (condition2) {

 PHP statements to run if condition2 is TRUE

}

You can string as many elseif statements into the code block as necessary to
check for alternative conditions. Each elseif statement requires its own condi-
tion check.

Follow these steps to try out using if, else, and elseif statements:

1. Open your favorite text editor, program editor, or integrated develop-
ment environment (IDE) package.

2. Type the following code into the editor:

<!DOCTYPE html>

<html>

<head>

<title>Testing PHP Program Control</title>

</head>

<body>

PH
P

Fl
ow

 C
on

tr
ol

CHAPTER 2 PHP Flow Control 329

<h1>Random number test</h1>

<?php

 $number = rand(1, 100);

 if ($number > 50) {

 echo "<h2>The value $number is big!</h2>\n";

 } elseif ($number > 25) {

 echo "<h2>The value $number is medium</h2>\n";

 } else {

 echo "<h2>The value $number is small</h2>\n";

 }

?>

</body>

</html>

3. Save the file as phpconditiontest.php in the DocumentRoot folder for
your web server.

For XAMPP on Windows, use c:\xampp\htdocs; for XAMPP on macOS,
use /Applications/XAMPP/htdocs.

4. Open the XAMPP Control Panel and start the Apache web server.

5. Open your browser and enter the following URL:

http://localhost:8080/phpconditiontest.php

You may need to change the TCP port used in the URL to match your web
server.

6. Click the Refresh button on your browser to reload the web page.

That should run the PHP program again, selecting a new random number.

7. Close the browser when you’re done.

The program uses the PHP rand() function to select a random number from
1 to 100. The value is compared in two separate condition checks in the if and
elseif statements. If both fail, the code falls through to the final else statement.
PHP runs the appropriate echo statement based on which condition succeeds.
Figure 2-1 shows an example of the output you should see in your web page.

Each time you click your browser’s Refresh button, the browser makes a new
request to the server to reload the web page. That triggers the server to reload the
web page in the PHP server, which in turn reruns the program.

330 BOOK 4 PHP

The switch statement
Writing long if, elseif, and else statements to check for a long list of condi-
tions can get tedious. To help out with that, PHP provides the switch statement.
The switch statement allows you to perform one check, and then provide multiple
values to compare the check against:

switch (condition) {

 case value1:

 statement1;

 break;

 case value2:

 statement2;

 break;

 default:

 statement3;

}

The switch statement evaluates the condition you specify against the different
values presented in each case statement. If one of the values matches the result
of the condition, PHP jumps to that section of the code to run the statements con-
tained in that section.

It’s important to note, though, that the case statements are labels and not code
blocks. After PHP runs the statements in the case section it jumped to, it continues
to run the statements in all the case sections after it! To prevent that from hap-
pening, use the break statement at the end of the case code section. That causes
PHP to break out of the switch statement and skip any remaining case sections.

FIGURE 2-1:
The output

from the
phpcondition

test.php
program.

PH
P

Fl
ow

 C
on

tr
ol

CHAPTER 2 PHP Flow Control 331

Also, you can place a default statement section at the end of the switch
statement code block. If none of the case values matches the condition value, PHP
jumps to the default section.

Looping
Sometimes you’ll find yourself needing to repeat the same operation multiple
times, such as when you’re displaying all the values in an array variable or data-
base table. You could just write out all the PHP statements yourself, but that could
get cumbersome:

$family = array("Rich", "Barbara", "Katie", "Jessica");

echo "One member of my family is $family[0]
\n";

echo "One member of my family is $family[1]
\n";

echo "One member of my family is $family[2]
\n";

echo "One member of my family is $family[3]
\n";

This code would certainly display all the elements contained within the array, but
what if there were 100 elements in the array? That would require a lot of coding!

Notice that most of the code in the echo statements is the same — the only thing
that differs is the index used in the array to reference the specific data element in
the array. All that you need to do is iterate through the index numbers and use the
same code. Well, that’s exactly what you can do using the PHP looping functions.

PHP provides a family of looping functions available for you to use in your code.
The following sections walk through the different ways to loop through code
in PHP.

The while family
The while statement allows you to create a simple loop of code based on a condi-
tion that you specify in the statement:

while (condition) {

 statements

}

In each iteration of the loop, PHP evaluates the condition you specify. If the
 condition evaluates to a TRUE value, PHP runs the statements contained in the

332 BOOK 4 PHP

while code block. As soon as the condition evaluates to a FALSE value, PHP breaks
out of the loop and continues on with the next statement after the loop.

The while statement is tricky in that something inside the loop code must alter
the value checked in the condition; otherwise, it will never end (called an endless
loop). Usually, there’s some type of variable that you must change inside the loop
and then check in the condition.

Follow these steps to test using the while statement to create a loop:

1. Open your editor and type the following code:

<!DOCTYPE html>

<html>

<head>

<title>PHP While Test</title>

</head>

<body>

<h1>Presenting the Beatles</h1>

<?php

$group = array("John", "Paul", "George", "Ringo");

$count = 0;

while ($count < 4) {

 echo "One member of the Beatles is

 $group[$count]
\n";

 $count++;
}

?>

</body>

</html>

2. Save the file as phpwhiletest.php in the DocumentRoot folder for your
web server.

3. Ensure that the web server is running and then open your browser and
enter the following URL:

http://localhost:8080/phwhiletest.php

4. Close the browser when you’re done.

When you run the program, you should see the output as shown in Figure 2-2.

PH
P

Fl
ow

 C
on

tr
ol

CHAPTER 2 PHP Flow Control 333

Remember that array data indexes always start at 0, so you need to start the
$count variable at 0 before entering the loop. In the while loop condition, you
need to check to make sure the $count variable value hasn’t gotten past the last
index in the array. With four data elements in the array, the last index value is 3.
So, as long as the $count variable value is less than 4, the program can continue
iterating through the code in the loop. The code uses the $count variable as the
$group array index to reference each individual data element in the echo state-
ment. Finally, there’s an incrementor statement to add 1 to the $count variable at
the end of each loop iteration.

Similar to the while statement is the do...while statement. The do...while
statement changes the order of when the condition check is performed:

do {

 statements

} while (condition)

With the do...while loop, PHP doesn’t check the condition until after it runs the
code inside the loop block. This ensures that the code will be run at least one time,
even if the condition evaluates to a FALSE value.

The for statement
The while loop statement is a great way to iterate through a bunch of data, but it
can be a bit cumbersome to use. With the while statement, you need to make sure

FIGURE 2-2:
The output of the
phpwhiletest.

php program.

334 BOOK 4 PHP

you set a PHP variable that changes value inside the loop code, and make sure you
code the condition to stop when that variable reaches a specific value. Sometimes
with large blocks of code, that can get complicated to track.

PHP provides an all-on-one type of looping statement called the for statement.
The for statement can keep track of loop iterations for you.

Here’s the basic format of the for statement:

for(statement1; condition; statement2) {

 PHP statements

}

The first parameter, statement1, is a PHP statement that the PHP server runs
before the loop starts. Normally, this statement sets the initial value of the coun-
ter used in the loop.

The middle parameter, condition, is the standard PHP condition check that’s
evaluated after each loop iteration. The last parameter, statement2, is a PHP
statement that’s run at the end of each loop iteration. This is normally set to
change the value of the counter used in the loop.

Here’s the same code used to demonstrate the while loop, but using the for
statement:

<?php

$group = array("John", "Paul", "George", "Ringo");

for ($count = 0; $count < 4; $count++) {
 echo "One member of the Beatles is

 $group[$count]
\n";

}

?>

Because the for loop does everything for you, you don’t need to worry about
incrementing the counter value inside the code block. At the end of each iteration,
PHP runs the incrementor specified in the for statement for you.

The foreach statement
One problem that you may often run into with PHP is having to iterate through all
the data elements contained within an associative array variable.

An associative array uses text keys, not numbers, to track data values. There’s no
way you can increment through the keys in an associative array variable using the
for statement.

PH
P

Fl
ow

 C
on

tr
ol

CHAPTER 2 PHP Flow Control 335

Fortunately, the PHP developers have come to your rescue with the foreach
 statement. The foreach statement loops through each of the keys created in an
associative array and allows you to retrieve both the key and its associated value.

Here’s the format of the foreach statement:

foreach (array as $key => $value) {

 PHP statements

}

In each iteration, the foreach statement assigns the associative key to the $key
variable, and its associated value to the $value variable. You can then use those
variables in your PHP code inside the code block.

Follow these steps to try out the foreach statement with an associative array
variable:

1. Open your editor and type the following code:

<!DOCTYPE html>

<html>

<head>

<title>PHP foreach Test</title>

</head>

<body>

<h1>My favorites</h1>

<?php

$favs = array("fruit"=>"banana","veggie"=>"carrot","meat"

 =>"roast beef");

foreach($favs as $food => $type) {

 echo "$food - $type
\n";

}

?>

</body>

</html>

2. Save the file as foreachtest.php in the DocumentRoot folder of the web
server.

3. Ensure that the web server is running, and then open your browser and
enter the following URL:

http://localhost:8080/foreachtest.php

4. Close the browser when you’re done.

336 BOOK 4 PHP

When you run the program, you should get the results shown in Figure 2-3.

The foreach statement iterates through each key contained in the $favs associ-
ative array variable, assigning the key to the $food variable and its value to the
$type variable. The code then uses the echo statement to display the values on
the web page.

Building Your Own Functions
While you’re coding in PHP, you’ll often find yourself using the built-in functions
available (such as the rand() function you used earlier in the example programs).
Functions are nothing more than PHP code someone else wrote to accomplish a
useful feature that you can use in any program. Instead of having to copy all the
code into your application, you just use the function name.

PHP allows you to create your own functions to use in your programs and share
with others. After you define a function, you can use it throughout your program.
This saves typing if you use a common routine or block of code in lots of places in
your application. All you need to do is write the code once in the function defini-
tion and then call the function everywhere else you need it.

FIGURE 2-3:
The output

from the
foreachtest.
php program.

PH
P

Fl
ow

 C
on

tr
ol

CHAPTER 2 PHP Flow Control 337

The basic format for a function definition looks like this:

function name(parameters) {

 function code

 return value;

}

The name must uniquely identify the function. It can’t be one of the existing PHP
function names, and it can’t start with a number (although numbers can appear
anywhere else in the function name).

The parameters identify one or more variables that the calling program can pass
to the function (or you can have a function that requires o parameters). If there is
more than one variable in the parameter list, you must separate them with com-
mas. You can then use the variables anywhere within the function code, but they
only apply to inside the function code block. You can’t access the passed parame-
ter variables anywhere else in the program code.

Any variables you define inside the function code apply only to the function code.
You can’t use function variables in the PHP code outside the function definition.

The return statement allows you to pass a single value back to the calling pro-
gram. It’s the last statement in the function definition code, and it returns control
of the program back to the main code section in your program.

Try out the following steps to experiment with creating a function and using it in
your PHP program:

1. Open your editor and type the following code:

<!DOCTYPE html>

<html>

<head>

<title>PHP Function Test</title>

</head>

<body>

<?php

function factorial($value1) {

 $factorial = 1;

 $count = 1;

 while($count <= $value1) {

 $factorial *= $count;

 $count++;
 }

 return $factorial;

338 BOOK 4 PHP

}

?>

<h1>Calculating factorials</h1>

<?php

echo "The factorial of 10 is " . factorial(10) . "
\n";

echo "The factorial of 5 is " . factorial(5) . "
\n";

?>

</body>

</html>

2. Save the file as factest.php in the DocumentRoot folder for your web
server.

3. Open your browser and enter the following URL:

http://localhost:8080/factest.php

4. Close your browser when you’re done.

When you run the factest.php program, the output should look like what’s
shown in Figure 2-4.

All the code required to calculate the function is contained within the factorial()
function definition code block. When PHP uses the factorial() function, it passes
a single value that the function assigns to the $value1 variable. When the calcula-
tion is complete, the function code returns the results back to the main program.

FIGURE 2-4:
The output from

the factest.php
program.

PH
P

Fl
ow

 C
on

tr
ol

CHAPTER 2 PHP Flow Control 339

The main program uses the factorial() function twice in the code, both embed-
ded in echo statements:

echo "The factorial of 10 is " . factorial(10) . "
\n";

echo "The factorial of 5 is " . factorial(5) . "
\n";

You can embed variables inside the string values in echo statements, but you can’t
embed functions. To insert the output from the function into the echo statement
output, the code uses the string concatenation operator (the period) to “glue”
the output from the strings and the factorial() functions into a single string to
display.

If you have lots of functions that you use in many of your programs, you can
define them in a separate file. Then to use the functions in your programs just
use the include() function to include the function file, and you can then use the
functions inside your programs without having to retype them!

Working with Event-Driven PHP
Because PHP is a server-side programming language, you can't associate it
directly with events that occur within the browser. However, that said, you can
link your PHP web pages to specific events in the web page so that the browser can
request a specific web page based on an event.

There are basically two methods for doing that:

 » Creating a link to a PHP web page

 » Creating a form to pass data to a web page

The following sections describe how to use each of these event-driven methods to
launch your PHP web pages.

Working with links
In HTML5, you create hypertext links on the web page using the anchor element:

Click here

The text Click Here appears on the web page, and when the site visitor clicks that
link, the browser requests the mypage.html file from the web server.

340 BOOK 4 PHP

You can use this method for passing small amounts of data to the PHP web pages
in your web application. As part of the URL, you can embed variable/value pairs
after the URL location that get passed to the web server:

Click to shop

The browser sends the data combination of content and store to the web server
as part of the GET request for the new web page. If you need to send more data,
separate them with the ampersand sign:

href="mystore.php?content=buy&prodid=10"

This link sends two variable/value pairs to the web server using the GET method:

content=buy

prodid=10

To retrieve the data values passed using the GET method in your PHP code, use
the special array variable $_GET[]. The PHP server populates the $_GET[] array
variable with all the variable/value pairs passed in the GET method from the client
browser. You can then access those array variables in your PHP program code.

Follow this example to test out using the GET method to pass data from a link click
event to a PHP program:

1. Open your editor and enter the following code:

<!DOCTYPE html>

<html>

<head>

<title>Testing Link Events in PHP</title>

</head>

<body>

<h1>Please select one of the following links:</h1>

Buy products

Browse for products

I need assistance

</body>

</html>

2. Save the file as linktest.html in the DocumentRoot folder for your web
server.

PH
P

Fl
ow

 C
on

tr
ol

CHAPTER 2 PHP Flow Control 341

3. Open a new window in your editor and enter the following code:

<!DOCTYPE html>

<html>

<head>

<title>Testing Link Events in PHP</title>

</head>

<body>

<h1>Thanks for visiting us!<h1>

<?php

$content = $_GET['content'];

echo "<h2>You are in the $content section</h2>\n";

?>

</body>

</html>

4. Save the file as linktest2.php in the DocumentRoot folder for your web
server.

5. Ensure that the web server is running, and then open your browser and
enter the following URL:

http://localhost:8080/linktest.html

6. Click one of the links on the web page, and observe what appears in the
resulting web page.

7. Close the browser when you’re done.

When you open the linktest.html web page, you’ll see a series of links that
simulate a navigation menu bar in a web page. Each link consists of a hyptertext
link that points to the same web page (linktest2.php) but sets a different value
for the content variable passed in the GET method. When you open the page, you
should see the results, as shown in Figure 2-5.

When you click a link on the web page, the browser sends a GET request to the
web server for the specified web page file, and passes the content variable setting
assigned in the anchor element tag.

When the Apache web server receives the GET request from the client browser,
it retrieves the linktest2.php file, and because it uses the .php file exten-
sion, it passes it to the PHP server to process the embedded PHP code. The PHP
server detects the GET variable/value pair passed and assigns it to the $_GET[]

342 BOOK 4 PHP

array variable. The code in the linktest2.php code retrieves that value from the
$_GET[] array variable and assigns it to another variable:

$content = $_GET['content'];

The code then uses that variable in the echo statement to display on the web page.
The result is shown in Figure 2-6.

FIGURE 2-5:
The output from

the linktest.
html file.

FIGURE 2-6:
The result of

clicking the Buy
a Product link on

the linktest.
html web page.

PH
P

Fl
ow

 C
on

tr
ol

CHAPTER 2 PHP Flow Control 343

Notice the URL that appears in the address bar in the link2test.php web page.
It contains the content variable, along with the value that was set by the anchor
element href attribute. Because the values set using the GET method appear in the
URL, they aren’t a secure method of sending data. You should limit using the GET
method to passing data about web pages and not personal information.

Processing form data
Book 2, Chapter 3, discusses how to build data entry forms using HTML5 code.
To refresh your memory, the core of the HTML5 form is the <form> tag. This
tag defines the beginning and end of the data fields that make up the form. The
<form> tag uses three main attributes:

 » name: Specifies a unique name for the form

 » method: Specifies the HTTP method used to pass data

 » action: Specifies the web page to pass the form data to

Within the form element, you include HTML elements for text boxes, text areas,
radio buttons, check boxes, and other HTML5 form data fields. Each element uses
a unique name to identify it in the form data that the browser sends to the action
web page.

Because PHP runs on the server, it has no way of knowing when the site visi-
tor is done filling out the form data fields in the browser window. With PHP, it’s
imperative to have a Submit button in the form to indicate to the browser when
to send the form data to the web page specified in the action attribute, using the
method specified in the method attribute.

A simple HTML5 form to use with PHP would look like this:

<form name="myform" action="mypage.php" method="POST">

<label>First name</label>

<input type="text" name="fname" size="40">

<label>Last name</label>

<input type="text" name="lname" size="40">

<input type="submit">

</form>

After the site visitor fills in the form data, she needs to click the Submit button to
send the data to the mypage.php file specified in the form action attribute. The
browser sends the form data embedded behind the scenes in the HTTP communi-
cation with the web server.

344 BOOK 4 PHP

In the receiving web server, it passes the data received by the POST method to the
PHP server, which uses the special $_POST[] array variable to retrieve the form
data. You can then access that data in your PHP code using the $_POST[] array
variable, along with the form field names:

$firstname = $_POST['fname'];

$lastname = $_POST['lname'];

The same method works for retrieving data from a <textarea> form field.

To retrieve the value from a select element, the name attribute of the select ele-
ment defines the field name, and the option element value attribute for the option
selected in the field is the value passed in the POST data. Consider the following
form field:

<select name="age">

<option value="young">18-35</option>

<option value="middleage'>36-55</option>

<option value="old">56+</option>
</select>

When the site visitor selects the option labeled 18-35 in the drop-down list, the
form sends the value young in the POST data. The PHP code can then access the
$_POST['age'] array variable to retrieve the selected value.

To retrieve the value from a radio button element, the name attribute for all the
buttons in the same group is the same. The value attribute defines what data is
sent to the server as part of the POST data:

<input type="radio" name="age" value="young">18-35

<input type="radio" name="age" value="middleage">36-55

<input type="radio" name="age" value="old">56+

The PHP code checks the $_POST['age'] variable for the data value passed by the
selected radio button.

Working with check box data fields can be a little tricky. The check box doesn’t
pass any data — it just indicates whether the box is checked. If the box is checked,
it sends the value specified by the value attribute assigned to the data field speci-
fied name attribute:

<input type="checkbox" name="age" value="old">

If the site visitor checks the box in the form, the form sends the data field age
with a value of old, and your PHP code can retrieve the selection using the
$_POST['age'] array variable.

PH
P

Fl
ow

 C
on

tr
ol

CHAPTER 2 PHP Flow Control 345

The problem comes in if the site visitor doesn’t select the check box. If the check
box is not selected, the form doesn’t send any data for the form field. In that case,
if you try using the $_POST['age'] array variable, you get an error from PHP that
it doesn’t exist.

To determine if a check box form field has been selected, you use the isset() PHP
function. The isset() function returns a TRUE value if the PHP variable exists and
has a value assigned to it or a FALSE value if not. You can then write something
like this:

if (isset($_POST['age'])) {

 $age = $_POST['age'];

} else

 $age = "not selected";

}

Now you’re able to determine whether the site visitor selected the check box.

Working with forms and PHP can be a bit tricky, but the more you practice, the
better you’ll get at it. Try out this example to get a feel for how to work with forms
and PHP:

1. Open your editor and type the following code:

<!DOCTYPE html>

<html>

<head>

<title>PHP Form Test</title>

<style>

 input, textarea {

 margin: 5px;

 }

</style>

</head>

<body>

<h1>Please fill in the form</h1>

<form action="formtest.php" method="post">

<fieldset>

<legend>My test form</legend>

<label>First name</label>

<input type="text" name="fname" size="40">

<label>Last name</label>

<input type="text" name="lname" size="40">

<fieldset>

<legend>Select your favorite sport</legend>

346 BOOK 4 PHP

<input type="radio" name="sport" value="baseball">Baseball

<input type="radio" name="sport" value="football">Football

<input type="radio" name="sport" value="hockey">Hockey

<input type="radio" name="sport" value="soccer">Soccer

</fieldset>

<label>Please type your essay</label>

<textarea name="essay" cols="50" rows="10"></textarea>

<input type="submit" value="Submit your form">

</fieldset>

</body>

</html>

2. Save the file as formtest.html in the DocumentRoot folder for your web
server.

3. Open a new window in your editor and type the following code:

<!DOCTYPE html>

<html>

<head>

<title>PHP Form Test</title>

</head>

<body>

<h1>Form results:</h1>

<?php

$fname = $_POST['fname'];

$lname = $_POST['lname'];

if (isset($_POST['sport'])) {

 $sport = $_POST['sport'];

} else {

 $sport = "not specified";

}

$essay = $_POST['essay'];

echo "<h2>First name: $fname</h2>\n";

echo "<h2>Last name: $lname</h2>\n";

echo "<h2>Favorite sport: $sport</h2>\n";

echo "<h2>Essay response:</h2>\n";

echo "<p>$essay</p>\n";

?>

</body>

</html>

4. Save the file as formtest.php in the DocumentRoot folder for your web
server.

PH
P

Fl
ow

 C
on

tr
ol

CHAPTER 2 PHP Flow Control 347

5. Ensure the web server is running and then open your browser and enter
the following URL:

http://localhost:8080/formtest.html

6. Fill in the from data fields, selecting a radio button but leaving the check
boxes all unchecked.

7. Click the Submit button when you’re done filling in the form.

8. Close the browser and shut down the web server.

The formtest.html file displays a standard HTML5 form on the web page, as
shown in Figure 2-7.

Enter your data in the form, but don’t make a selection for your favorite sport.
When you click the Submit button, the browser sends the form data as part of a
POST method to the web server, which passes the form data to the formtest.php
file as specified in the form action attribute.

The formtest.php code retrieves the form data and detects that none of the radio
buttons was selected. By using the isset() function. It displays the data passed
from the form, as shown in Figure 2-8.

Now you’re ready to process any HTML5 form using your PHP server-side pro-
gramming skills!

FIGURE 2-7:
The web form

produced by
the formtest.

html file.

348 BOOK 4 PHP

FIGURE 2-8:
The form results

as shown from
the formtest.

php file.

CHAPTER 3 PHP Libraries 349

PHP Libraries

As you start creating your dynamic web applications, you’ll often find your-
self wanting to perform certain functions that require quite a bit of coding,
such as manipulating data or performing complex mathematical calcula-

tions. The true test of a robust programming language is in how much work it can
save you by providing prebuilt code libraries that do most of the hard coding work
for you. Fortunately, PHP has an extensive set of built-in libraries that can save
you lots of development time as you build your web applications! This chapter
dives into the basics of using the built-in libraries in PHP.

How PHP Uses Libraries
All programming languages provide libraries of functions that help you with your
coding. How many there are and how they do that differs somewhat between pro-
gramming languages.

Some interpreted programming languages compile all the function libraries into a
single monolithic executable program that loads into memory each time the web
server runs a program that requires the interpreter. That can be a huge resource
hog on your server!

PHP took a more modular approach to things. Instead of compiling all the func-
tion libraries in a single program, PHP provides them as separate loadable library

Chapter 3

IN THIS CHAPTER

 » Getting familiar with PHP libraries

 » Working with text functions

 » Handling numbers

 » Using dates

 » Playing with images

350 BOOK 4 PHP

files, called extensions. That way, you (or your web-hosting company) can opt to
load only the extensions you need to use, saving memory on the server and hope-
fully improving the performance of the PHP server.

The downside to this approach is that you need to be more aware of just what PHP
extensions are available and which ones you should load. This section shows you
how PHP splits functions up into different extensions and how you can find the
functions you need to do your work.

Exploring PHP extensions
More than 150 extensions are available in the PHP package! There are exten-
sions to cover functions as simple as manipulating string values or as complex as
interacting with online search engines. The PHP developers have classified these
extensions into 27 categories. Table 3-1 shows the different categories, along with
a brief description of what each category contains.

TABLE 3-1	 PHP Extension Categories
Category Description

PHP behavior Functions that control how the PHP server operates

Audio formats Functions that handle and manipulate audio files

Authentication Functions that work with authentication services

Command line Functions that interact with the server command-line environment

Compression Functions that compress and archive files and folders

Credit card Functions that process credit card transactions

Cryptography Functions that encrypt and decrypt data

Database Functions that interact with database servers

Date and time Functions that handle dates and times

File system Functions that interact with the server file system

GUI Functions that work with user interface features

Human language Functions that work with character sets

Image processing Functions that create and manipulate images

Mail Functions that interact with mail servers

Mathematical Functions that perform complex mathematical operations

PH
P

Li
br

ar
ie

s

CHAPTER 3 PHP Libraries 351

Each category contains multiple extensions that are available for you to load and
use in your PHP programs. There are far too many PHP extensions to list them all
individually here. For a full and current list of the PHP extensions, go to the PHP
online documentation at www.php.net/manual/en/funcref.php.

Examining the PHP extensions
You can view which extensions are actively installed in your specific PHP server
environment by using the special phpinfo() function. Just include that as a single
line in a PHP program. When you run the program, the phpinfo() function dis-
plays a table showing detailed information about the PHP server, including which
PHP extensions are currently installed.

Follow these steps to determine which PHP extensions are installed in your PHP
server environment.

1. Open your favorite text editor, program editor, or integrated develop-
ment environment (IDE) package.

2. Type the following code:

<!DOCTYPE html>

<html>

<body>

Category Description

Non-text MIME Functions that handle binary data in MIME messages

Process control Functions that interact with processes on the server

Other Miscellaneous functions that manipulate data

Other services Functions that interact with network services

Search engine Functions that interact with online search engines

Session Functions that handle browser sessions

Text Functions that manipulate and process text

Variable Functions that work with complex objects and data structures

Web services Functions that interact with web service servers and clients

Windows Functions that access Microsoft Windows features on
Windows servers

XML Functions that handle and manipulate data in XML format

http://www.php.net/manual/en/funcref.php

352 BOOK 4 PHP

<?php

phpinfo();

?>

</body>

</html>

3. Save the file as extensions.php in the DocumentRoot folder for your web
server.

For XAMPP on Windows, that’s c:\xampp\htdocs; for XAMPP on macOS,
it’s /Applications/XAMPP/htdocs.

4. Open the XAMPP Control Panel, and then start the Apache web server.

5. Open your browser, and enter the following URL:

http://localhost:8080/extensions.php

You may need to change the TCP port in the URL to match your web server.

6. Examine the output generated by the phpinfo() function, looking for
which extensions are installed on your system.

7. Close the browser when you’re done.

Figure 3-1 shows the results from the XAMPP package running on a Windows
workstation.

FIGURE 3-1:
The output from

the phpinfo()
function.

PH
P

Li
br

ar
ie

s

CHAPTER 3 PHP Libraries 353

As you scroll through the listing generated by the phpinfo() function, you’ll see
separate sections devoted to the different extensions and the configuration set-
tings that control how they operate. Most likely, your PHP server has quite a few
(if not all) of the extensions already activated. If any are missing, you can usually
activate them yourself. That’s covered in the next section.

Including extensions
Most PHP server environments include all the extension library files in the PHP
server build, but they may not activate all of them to help save memory as the PHP
server runs. If you find yourself needing to activate a specific PHP extension, you
can easily do that from the PHP configuration file.

The first step is to find the php.ini configuration file for your PHP server envi-
ronment. The easiest way to do that is from the output of the phpinfo() function.

If you followed the steps in the previous exercise, you can view the output of the
phpinfo() function in your browser. In that output, look for the line in the top
section for Loaded Configuration File. That shows the path to the configuration
file the PHP server is using.

Using your system’s file manager program (File Explorer for Windows, Finder for
Mac), navigate to the folder where the php.ini file is stored, and then double-
click the file to open it with a text editor.

Look for the section labeled Dynamic Extensions within the php.ini configura-
tion file. This is where the configuration file defines the extensions to install. Each
extension is referenced by a single line. For Windows systems, it looks like this:

extension=name.dll

For Mac and Unix/Linux systems, it looks like this:

extension=name.so

The extension names are in the format php_name where name is the unique name
assigned to the extension. For example, the extension for interacting with MySQL
servers is called php_mysqli (the i is added because it’s an improved version from
the original MySQL extension).

354 BOOK 4 PHP

Not all PHP server environments use extensions, so you may not see any entries
for them in the php.ini configuration file. For example, the XAMPP for the
macOS environment compiles all the extensions directly into the main PHP server
executable.

Adding additional extensions
As you can probably guess, you can create your own PHP extensions for your own
custom functions. This has become quite popular in the PHP developer world, and
a clearinghouse has been created for sharing custom-made extensions with other
PHP developers.

The PHP Extension Community Library (PECL) hosts a library of custom exten-
sions shared by developers from around the world. You can access PECL at
https://pecl.php.net. There, you’ll find extensions that add additional func-
tionality to the standard PHP libraries, as well as add entirely new features, such
as the html_parse extension, which provides functions to access a remote web
page and parse the DOM tree elements to extract data!

Now that you know about PHP extensions, the following sections take a look at
some of the more popular ones and the functions they contain that can help save
you some time in your PHP coding.

Text Functions
Just about every web application needs to work with text data. There’s a wealth of
text processing and manipulation functions available at your fingertips within the
PHP extension library. This section walks through some of the more useful ones
that may come in handy as you process data in your applications. There are so
many text functions provided by PHP that trying to find just what you’re looking
for in the PHP online manual can be a bit overwhelming. This section breaks up
the functions into categories to help simplify things a bit.

Altering string values
PHP provides a handful of functions that manipulate either the text or the text
format in string values. Table 3-2 shows the string functions that can be useful
when you need to manipulate string values.

https://pecl.php.net

PH
P

Li
br

ar
ie

s

CHAPTER 3 PHP Libraries 355

The string manipulation functions don’t change the value of the original string —
they just return a new string value. If you want to use the result in your program,
you have to assign it to another variable:

$newvalue = trim($data);

The htmlspecialchars() and strip_tags() functions are extremely helpful if
you’re creating a web application that accepts data from unknown site visitors.
Unfortunately, it’s all too common these days for an unseemly website to run
robot scripts that scan the Internet looking for websites that allow site visitors to
post comments without requiring a login. These robots then post advertisements
as comments in the website, and these advertisements more often than not con-
tain a hypertext link to a rogue website.

TABLE 3-2	 PHP String Manipulation Functions
Function Description

addslashes Adds an escape character (backslash) in front of single quote, double quote,
backslash, and NULL characters.

chop Removes all whitespace characters from the end of a string.

htmlentities Converts HTML codes into HTML tags.

htmlspecialchars Converts any HTML tags embedded in a string into HTML codes.

lcfirst Changes the first character of the string to lowercase.

ltrim Removes any whitespace characters from the start of a string.

money_format Formats a monetary string value into a currency format.

nl2br Converts newline characters to the
 HTML tag.

number_format Allows you to specify the format to display a number value.

rtrim Removes all whitespace characters from the end of a string.

str_replace Replaces the occurrences of a string with another string.

strip_tags Removes all HTML and PHP tags from a string.

strtolower Converts the string to lowercase.

strtoupper Converts the string to uppercase.

trim Removes all whitespace characters from the start and end of a string.

ucfirst Converts the first character of the string to uppercase.

356 BOOK 4 PHP

The htmlspecialchars() and strip_tags() functions can help block that
 silliness. They detect any HTML code embedded within a string value and either
remove them completely (the strip_tags() function) or convert the greater-
than and less-than symbols in the tag into the HTML > and < codes (the
htmlspecialchars() function). This helps prevent your site visitors from acci-
dentally clicking rogue hypertext links embedded within posts!

The nl2br() function comes in handy if your web application processes text files
to display on the web page. If the text file contains new-line characters, those
won’t display on the web page, which may alter the layout of the text. If you pass
the data through the nl2br() function, it converts any new-line characters in the
text to HTML5
 tags, preserving the text layout on the web page.

Yet another useful string manipulation function you don’t often see in other pro-
gramming languages is the addslashes() function. This function is useful when
you need to push data submitted by site visitors into a SQL database. It escapes
any single or double quotes embedded within the string value, so that they don't
conflict with any quotes needed to embed the string into a SQL statement to sub-
mit to the database. This little function can save you lots of trouble with handling
data for your database!

Splitting strings
Another common function in string manipulation is the ability to split strings
into separate substrings. This comes in handy when you’re trying to parse string
values to look for words. Table 3-3 shows the PHP string splitting functions that
are available.

TABLE 3-3	 PHP String Splitting Functions
Function Description

chunk_split Splits a string value into smaller parts of a specified length.

explode Splits a string value into an array based on one or more delimiter characters.

implode Joins array elements into a single string value.

str_getcsv Parses a comma-delimited string into an array.

str_split Splits a string into an array based on a specified length.

PH
P

Li
br

ar
ie

s

CHAPTER 3 PHP Libraries 357

The str_getcsv() function is extremely useful when you need to parse comma-
separated data entered by site visitors, such as search terms. Follow these steps to
see a demonstration of how this works:

1. Open your editor and type the following code:

<!DOCTYPE html>

<html>

<head>

<title>String Parsing Test</title>

<style>

 input {

 margin: 5px;

 }

</style>

</head>

<body>

<h2>String parse test</h2>

<form action="parseoutput.php" method="post">

<p>Enter a list of search words, separated with commas</p>

<input type="text" name="search" size="40">

<input type="submit" value="Search">

</form>

</body>

</html>

2. Save the file as parseinput.html in the DocumentRoot folder for your web
server.

3. Open a new tab or window in your editor and type the following code:

<!DOCTYPE html>

<html>

<head>

<title>String Parse Test Results</title>

</head>

</body>

<h1>Search word results</h1>

<?php

$search = $_POST['search'];

$words = str_getcsv($search);

358 BOOK 4 PHP

foreach ($words as $word) {

 $term = trim($word);

 echo "<p>Search term: '$term'</p>

\n";

}

?>

</body>

</html>

4. Save the file as parseoutput.php in the DocumentRoot folder for your web
server.

5. Ensure that your web server is still running, and then open your browser
and enter the following URL:

http://localhost:8080/parseinput.html

6. In the text box, type a comma-separated list of words, and then click the
Submit button.

7. Observe the results in the parseoutput.php page.

8. Close your browser window when you’re done.

The parseinput.html file creates a simple HTML form that contains a single text
box for you to enter search words, as shown in Figure 3-2.

FIGURE 3-2:
The web page

generated by the
parseinput.php

code.

PH
P

Li
br

ar
ie

s

CHAPTER 3 PHP Libraries 359

Type a comma-separated list of words in the text box, and then click the Search
button to send them to the parseoutput.php file. The parseoutput.php code
retrieves the list of words using the standard $_POST[] array variable:

$search = $_POST['search'];

Then it uses the str_getcsv() function to parse the string and split the words
into an array variable. It then uses the foreach statement to display the individual
words in the web page, as shown in Figure 3-3.

The trim() function is used to remove any extra spaces or tab characters that
may have been added between the search terms in the form. These are handy little
functions to have in your toolbox as you code your web applications!

Testing string values
A vital function in string manipulation is the ability to test string values for spe-
cific conditions. PHP provides several string-testing functions that help with that,
as shown in Table 3-4.

FIGURE 3-3:
The web page

result from the
parseoutput.

php code.

360 BOOK 4 PHP

The string-testing functions provide quite a bit of information about the data you
receive from your site visitors, as well as performing simple string comparisons to
check data. The strcmp() function is crucial in evaluating data entered into forms
in response to questions in your web applications.

The is_numeric() function is handy to use when testing data submitted in HTML5
forms from unknown site visitors to ensure a numeric value was submitted.

Searching strings
Yet another common string function is searching for a specific value within a
string. If you just need to know if a substring value is contained within a string
value, use the strpos() function. Here’s the format of the strpos() function:

strpos(largestring, substring);

PHP will look for the string substring within the largestring string value. It
returns the position where the substring is found inside the largestring (with
position 0 being the first character of the string). If the substring is not found, it
returns a FALSE value. Be careful though, because position 0 returns a numeric 0,
which is different from a FALSE value! To properly test for the difference you
must use the === comparison operator, which compares both the value and the
data type.

TABLE 3-4	 PHP String-Testing Functions
Function Description

is_bool Returns a TRUE value if the string is a valid Boolean value.

is_float Returns a TRUE value if the string is a valid float value.

is_int Returns a TRUE value if the string is a valid integer value.

is_null Returns a TRUE value if the string is a NULL value.

is_numeric Returns a TRUE value if the string is a valid number or
numeric string.

str_word_count Returns the number of words in a string or an array of words.

strcasecmp Performs a case-insensitive string comparison.

strcmp Compares the binary values of two string values.

strlen Returns the number of characters in a string.

strncmp Compares the first n characters of two string values.

PH
P

Li
br

ar
ie

s

CHAPTER 3 PHP Libraries 361

Math Functions
Chapter 1 in this minibook shows the basic arithmetic operators that PHP sup-
ports. However, there are lots more advanced mathematical features that are
available in the PHP extensions! This section discusses the different math func-
tions you can add to your web applications to help save you from having to create
complex code for your calculations.

Number theory
Number theory functions provide handy mathematical features, such as finding
the absolute value, square root, or factorial of a number. PHP has lots of different
number theory functions built in and ready for you to use in your calculations.
Table 3-5 lists some of the more common ones you’ll use.

REGULAR EXPRESSIONS
Besides a simple string search, PHP supports more complex regular expression string
searches. Regular expressions allow you to define a template to compare against the
string value. If the string matches the template, it passes the regular expression test.

In the past, PHP supported two different types of regular expressions formats:

• Perl Compatible Regular Expressions (PCRE)

• POSIX Extended Regular Expressions

However, since PHP version 7, support for POSIX regular expressions has been
dropped; only the PCRE regular expression format is supported today.

Using regular expressions to search for data is a powerful tool, but also a very complex
tool. Entire books and websites have been devoted to explaining all the complexities
of regular expression searching. In a nutshell, the key to regular expressions is defin-
ing a template that can filter out just the data you want. The template defines what
character(s) to look for in a string, and you can even define in what positions the charac-
ters should appear within the string if needed. PHP matches the string value against the
template, and if it matches, it returns a TRUE value. Check out the PHP online manual
section on the PCRE regular expressions (www.php.net/manual/en/book.pcre.php)
for more information on using regular expressions in your PHP code.

http://www.php.net/manual/en/book.pcre.php

362 BOOK 4 PHP

The rand() function is handy when you need to generate random numbers for
applications (such as guessing games). Without any parameters, the rand()
function returns a random integer value between 0 and the maximum integer
value supported by the server (you can determine that using the getrandmax()
 function). If you need a value from a smaller range, you can specify the min and
max range as parameters. The range values are inclusive, so if you specify the
 following, the rand() function will return a random number from 1 to 10:

$number = rand(1, 10);

Despite what you might think from its name, the is_nan() function does not
work to test input provided by site visitors to determine if the value is a number.
The is_nan() function only works for float values to determine if the float is in
the correct floating point notation. Use the is_numeric() string function instead.

Calculating logs and exponents
PHP supports several logarithmic functions that can help with some of your more
complex mathematical operations. Table 3-6 shows what tools you have available
for that.

TABLE 3-5	 PHP Number Functions
Function Description

abs Returns the absolute value of a number.

ceil Rounds a value up to the next largest integer.

floor Rounds a value down to the next lowest integer.

fmod Returns the floating point remainder of the division.

intdiv Performs an integer division.

is_finite Returns TRUE if the value is a finite number.

is_infinite Returns TRUE if the value is infinite.

is_nan Returns TRUE if the value is not a proper float value.

max Returns the largest value in an array.

min Returns the smallest value in an array.

pi Returns a float approximation of pi.

rand Returns a random number.

sqrt Returns the square root of a value.

PH
P

Li
br

ar
ie

s

CHAPTER 3 PHP Libraries 363

Since version 5.6, PHP has included the ** operator to perform exponentiation as
well as the pow() function. You can use either one in your mathematical calcula-
tions to get the same result.

Working the angles
If trigonometry is your thing, you’ll be glad to know that PHP includes all the
standard trig functions in the math extension. These are shown in Table 3-7.

TABLE 3-6	 PHP Logarithmic Functions
Function Description

exp Calculates the exponent of e.

expm1 Calculates the exponent of e minus 1.

log Performs a standard natural logarithm.

log10 Performs a base-10 logarithm.

log1p Calculates a log(1 + number).

pow Calculate the base raised to a power.

TABLE 3-7	 PHP Trigonometric Functions
Function Description

acos Calculates the arc cosine.

asin Calculates the arc sine.

atan Calculates the arc tangent.

cos Calculates the cosine.

deg2rad Returns the radian value of a degree.

hypot Calculates the length of the hypotenuse of a right triangle.

rad2deg Returns the degree value of a radian.

sin Calculates the sine.

tan Calculates the tangent.

364 BOOK 4 PHP

All the PHP trig functions require that you specify the angle values in radians
instead of degrees. If your application is working with degree units, you’ll need to
use the deg2rad() function to convert the values to radians before using them in
your calculations.

Hyperbolic functions
Somewhat related to trigonometric functions are the hyperbolic functions.
Whereas trigonometric functions are derived from circular calculations, hyper-
bolic functions are derived from a hyperbola calculation. Table 3-8 shows the
hyperbolic functions that PHP supports.

Just as with the trigonometric functions, you must specify the hyperbolic function
values in radian units instead of degrees.

Tracking statistics
The PHP statistics extension contains functions commonly used for statistical
calculations. It uses the open-source library of C routines for Cumulative Distri-
butions Functions, Inverses, and Other parameters (DCDFLIB) created by Barry
Brown and James Lavato.

The library contains about 70 functions for calculating statistical values from
beta, chi-square, f, gamma, Laplace, logistic, normal, Poisson, t, and Weinbull
distributions. If you understand any of those things, this is the extension for you!
Check out the available statistical functions in the PHP online manual at www.php.
net/manual/en/ref.stats.php.

TABLE 3-8	 PHP Hyperbolic Functions
Function Description

acosh Returns the inverse hyperbolic cosine.

asinh Returns the inverse hyperbolic sine.

atanh Returns the inverse hyperbolic tangent.

cosh Returns the hyperbolic cosine.

sinh Returns the hyperbolic sine.

tanh Returns the hyperbolic tangent.

http://www.php.net/manual/en/ref.stats.php
http://www.php.net/manual/en/ref.stats.php

PH
P

Li
br

ar
ie

s

CHAPTER 3 PHP Libraries 365

Date and Time Functions
Working with times and dates in web applications can be a tricky thing. If your
application needs to perform date arithmetic (such as calculating when 60 days
is from now), PHP has some useful functions for you! This section first walks
through just how PHP handles time and dates, then shows you some functions
that can help with your date calculations.

Generating dates
PHP provides the date() function for generating human-readable dates and
times. The date() function takes either one or two parameters:

date(format [, timestamp])

The format parameter is required. It specifies how you want PHP to display the
date and/or time values. The timestamp parameter is optional. It represents the
date and time you want to display as an integer timestamp value. The timestamp
value represents the date and time as the number of seconds since midnight,
 January 1, 1970 (it’s an old Unix standard). If you omit the timestamp value, PHP
assumes the current date and time.

The format is a string value that uses a complicated code to indicate how you want
the time and date to appear in the output. Table 3-9 shows the format codes that
are available.

TABLE 3-9	 The PHP date() Function Format Codes
Code Description Example

a Morning or evening as am or pm am

A Morning or evening as AM or PM AM

B The Swatch international time format 952 (for 9:52 pm)

c The date in ISO 8601 format 2018-05-15T22:51:52+01:00

d The day of the month as a two-digit value with leading zero
if necessary

15

D The day of the week as a three-letter abbreviation Mon

e Time zone identifier America/New_York

F The month of the year in full text January

(continued)

366 BOOK 4 PHP

Code Description Example

g The hour of the day in 12-hour format 4

G The hour of the day in 24-hour format 16

h The hour of the day in 12-hour format with leading zero 04

H The hour of the day in 24-hour format with leading zero 16

i Minutes past the hour with leading zero 05

I Whether the time zone is using daylight saving time 0 (for not using daylight
savings time)

j The day of the month as a number without leading zeroes 5

l The day of the week in full text Monday

L Whether the year is a leap year 0 (for non-leap years)

m The month of the year as a two-digit number with leading zero 01

M The month of the year as a three-letter abbreviation Jan

n The month of the year as a number without leading zero 1

o The year in ISO 8601 format 2018

O The difference between the current time zone and GMT -0500

r The date and time in RFC822 format Mon, 15 Jan 2018 22:56:35 +0100

s Seconds past the minute in two-digit format with leading zero 05

S Ordinal suffix of the date in two-letter format th (for 15)

t The total number of days in the date’s month 31

T The time zone setting of the server EST

U The date and time in Unix timestamp format 1516053508

w The day of the week as a single digit 1

W The week number in the year 03

y The year in two-digit format with leading zero 18

Y The year in four-digit format 2018

z The day of the year as a number 78

Z Offset for the current time zone in seconds -18000

TABLE 3-9 (continued)

PH
P

Li
br

ar
ie

s

CHAPTER 3 PHP Libraries 367

As you can see from the list of codes in Table 3-9, the date() function output is
very flexible! For example, if you use the following format:

$today = date("l, F jS, Y");

The $today variable would display the current date as:

Thursday, January 4th, 2018

Or if you prefer, you can just use:

$today = date("m/d/Y");

To display the date as:

01/04/2018

With the date() function codes, you can display the date and time in any format
you need!

Displaying dates in a website that can be seen internationally can be somewhat
tricky. Keep in mind the differences in how the United States represents dates and
how the rest of the world represents dates. To accommodate that difference, the
Organization of International Standards (ISO) has created the ISO 8601 standard
for displaying dates. It follows none of the common date formats, but instead,
uses its own style: 2018-01-04, which represents January 4, 2018. Later in the
book, when you work with dates in the MySQL server, you need to use this format
to store dates in the database.

Using timestamps
The second parameter of the date() function allows you to specify a different
date/time to display using a timestamp value. The problem, though, is that you
most likely don’t know what the timestamp value for a date is! No worries — you
have the handy strtotime() function to help you out.

The strtotime() function converts a date/time string value in just about any for-
mat into a timestamp value. For example, if you want to find out what day of the
week the Fourth of July is in the year 2020, just use the following code:

$timestamp = strtotime("07/04/2020");

$holiday = date("l", $timestamp);

368 BOOK 4 PHP

The strtotime() function returns the value 1593820800, which is the timestamp
representation for midnight on that day. You then use that as the second param-
eter in the date() function, and use the l (lowercase letter L) code format for the
output. The output will be the day of the week, Saturday.

There is a looming problem with using timestamp values in your PHP code.
Because the timestamp format is an old format, to remain backward-compatible,
systems store the value as a 32-bit integer data type. As you can guess, at some
point in the future, that value will overflow the storage capability of the integer
data type. That date happens to be January 14, 2038. If your application needs to
work with dates past then, you have to use some other way to handle dates.

Calculating dates
You have a couple of different ways to handle date calculations at your disposal in
PHP. One method is to work with timestamp values. If you know the timestamp
for the current date/time, you can add the number of seconds needed to represent
another date/time.

For example, to calculate the time ten minutes from now, you’d use the following
code:

$start = strtotime("07/04/2020 10:00:00");

$end = $start + (60 * 10);
$duedate = $date("H:i:s", $end);

The first line returns the timestamp value for the start date. The second line adds
the number of seconds for 10 minutes (60 seconds × 10 minutes) to the date time-
stamp. Finally, the third line returns the resulting time.

With timestamp values, you can perform all types of calculations, adding and
subtracting values from any start point. Just remember that you’re working with
seconds, so you need to convert the values into the appropriate timestamp values,
and add or subtract the appropriate number of seconds.

The other method for performing date calculations is to use the strtotime()
function itself. The strtotime() function is extremely versatile and can recog-
nize all sorts of common date representations. For example, if you want to find
out yesterday’s date, you use the following:

$yesterday = strtotime("yesterday");

PH
P

Li
br

ar
ie

s

CHAPTER 3 PHP Libraries 369

And the strtotime() function will return the timestamp value for yesterday! You
can also use some basic calendar math:

$duedate = strtotime("today + 120 days");

PHP will calculate that for you automatically! That saves you from having to do
the calculations yourself using timestamp values.

Image-Handling Functions
These days, it’s a common requirement to work with images in your web pages.
Whether vacation pictures on a blog or an online catalog of products, images have
become a crucial part of most web applications.

PHP doesn’t disappoint here. The php_gd2 extension is a complete graphical
manipulation library for processing images directly in your PHP applications.
Instead of having to rely on an external image manipulation program such as
Photoshop or GIMP, you can edit images directly in your application as you or your
site visitors upload them!

Not only can you manipulate uploaded images, but the php_gd2 extension also
has functions that allow you to create new images on the fly in your PHP code!
To create a new image, use the imagecreatetruecolor() function. This function
takes two parameters: the width and height of the new image, specified in pixels.
It returns a resource variable value that you use to reference the new image as you
add components to the image.

For example, to create a new image that is 80 pixels wide by 60 pixels high, use
this code:

$myimage = imagecreatetruecolor(80, 60);

After creating the new image, you’ll probably want to draw something in it. First,
you must allocate colors to use for the background and foreground objects:

$bg = imagecolorallocate($myimage, 255, 255, 255);

$fg = imagecolorallocate($myimage, 0, 0, 0);

The imagecolorallocate() function takes four parameters. The first parameter
is the image resource value returned when you create the image. The next three
parameters are the color, defined by the RGB value, just as you do with CSS style col-
ors. The value 255, 255, 255 represents white, while the 0, 0, 0 value represents black.

370 BOOK 4 PHP

After allocating the colors you need, you’re ready to start drawing on your canvas.
Table 3-10 covers the functions you have available for drawing lines, shapes, and
even text.

So, to create a new image file with the words Test Image, you’d use this code:

$image = imagecreatetruecolor(80, 60);

$bc = imagecolorallocate($image, 255, 255, 255);

$fc = imagecolorallocate($image, 0, 0, 0);

imagefilledrectangle($image, 0, 0, 80, 60, $bc);

imagestring($image, 5, 20, 5, "Test", $fc);

imagestring($image, 5, 10, 20, "Image", $fc);

imagejpeg($image, "myimage.jpg");

imagedestroy($image);

You should recognize most of these image functions. The imagestring() function
defines a font size followed by the X and Y coordinates of where to start the string,
followed by the string, followed by the color.

The imagejpeg() function converts the referenced image object in memory to
either an image on the web page or saves it to a file. I specified a filename to save
the image to. The imagedestroy() function removes the image from memory to
free up space. This is especially necessary when working with large images.

One of the biggest problems I often run into when using images in web applica-
tions is that they’re too big to fit nicely in the spaces I allocate on the web page. If
you run a web application that allows site visitors to upload their own images for
posting, you never know quite what to expect. Some visitors upload tiny picture
files, while others upload mega-sized images. The trick to a good web page is to
standardize all the images to make them fit nicely on the web page.

TABLE 3-10	 The GD2 Library Drawing Functions
Function Description

imageline Draws a line between two specified points, using a defined color.

imagechar Draws an alphanumeric character using a specified font, color, and location.

imagerectangle Draws a rectangle outline between four points using a defined color.

imagefilledrectangle Draws a solid rectangle between four points using a defined color.

imagestring Draws a string of characters using a specified font, color, and location.

PH
P

Li
br

ar
ie

s

CHAPTER 3 PHP Libraries 371

Sure, you can do that by manually downloading all the images, opening them
in Photoshop, resizing them, and then uploading the new images back to the
web server. That works, but it’s extremely time consuming and awkward. Fortu-
nately, the php_gd2 library has just the tool for you!

The imagecopyresampled() function allows you to resample an existing image to
a new image. Resampling rebuilds the image pixel by pixel, at a different resolu-
tion, using special algorithms to maintain the picture clarity.

By resampling the image, you can make it larger or smaller. The php_gd2
 extension library takes care of all the mathematical routines required to do that.
Follow these steps to try that out:

1. Open your editor and enter the following code:

<!DOCTYPE html>

<html>

<head>

<title>Image Manipulation Test</title>

<style>

 input {

 margin: 5px;

 }

</style>

</head>

<body>

<h2>Please select an image to upload</h2>

<form action="imageconvert.php" method="post"

 enctype="multipart/form-data">

<input type="file" name="picture">

<input type="submit" value="Submit">

</form>

</body>

</html>

2. Save the file as imageupload.html in the DocumentRoot folder for your
web server.

3. Open a new tab or window in your editor and enter the following code:

<!DOCTYPE html>

<html>

<head>

<title>Image Manipulation Test</title>

</head>

372 BOOK 4 PHP

<body>

<h1>The uploaded image:</h1>

<?php

$file = $_FILES['picture']['tmp_name'];

$picture = file_get_contents($file);

$sourceImage = imagecreatefromstring($picture);

$width = imageSX($sourceImage);

$height = imageSY($sourceImage);

$newheight = 400;

$newwidth = $newheight * ($width / $height);

$newImage = imagecreatetruecolor($newwidth, $newheight);

$result = imagecopyresampled($newImage, $sourceImage,

 0, 0, 0, 0,

 $newwidth, $newheight, $width, $height);

imagejpeg($newImage, "newimage.jpg");

?>

</body>

</html>

4. Save the file as imageconvert.php in the DocumentRoot folder for your
web server.

5. Have an image file handy that you want to copy and convert to a differ-
ent sized image.

6. Ensure the web server is running, and then open your browser to
the URL:

http://localhost:8080/imageupload.html

7. Click the file chooser button for the file upload text box as it appears in
your browser, navigate to your image file, select it, and then click the
Open button to select the name.

8. Click the Submit button to upload the image file for converting.

9. You should see the resized image appear on the resulting web page.

10. Close your browser and shut down the web server when you’re done.

The imageupload.html file creates a simple HMTL5 form using the file data
input type. The browser will provide a method for you to select a local file to enter
into the file input field, as shown in Figure 3-4 for the Chrome browser.

PH
P

Li
br

ar
ie

s

CHAPTER 3 PHP Libraries 373

The imageconvert.php code retrieves the uploaded image from the PHP server
using the special $_FILES[] array variable. The $_FILES[] array provides infor-
mation about files uploaded to the server within an HTML5 form. The tmp_name
array element contains the name of the temporary file the server creates to store
the uploaded file.

After retrieving the uploaded file, the code converts it to an editable php_gd2
library object using the imagecreatefromstring() function.

Using the uploaded image object, the code calculates the width and height of the
original image using the imageSX() and imageSY() functions. Then with a little
bit of algebra, the code sets the new image height to a set height, and calculates
the new width required to keep the original aspect ratio of the image. This ensures
that all images that appear on the web page use the same height.

With the new width and height values calculated, the code then uses the image
copyresampled() function to copy and resample the original image to the
resized image object. The imagejpeg() function saves the new image as the file
newimage.jpg in the DocumentRoot folder of the web server. Finally, the code
displays the new image on the web page using a standard HTML5 tag, as
shown in Figure 3-5.

Now you can resize uploaded image files on the fly, without any intervention
required on your part!

FIGURE 3-4:
The output

from the
 imageupload.
html program.

374 BOOK 4 PHP

FIGURE 3-5:
Displaying the

resampled and
resized image.

CHAPTER 4 Considering PHP Security 375

Considering PHP Security

Web application security is a hot topic these days, and for good reason!
It seems that almost every day there’s a news story about some com-
pany being attacked and having important data stolen. These breaches

are costly — both for the company and for the thousands of customers who have
personal information stolen.

As a web application developer, your job is to put security first in all your design
and coding work. You’re the front line in the battle of data security! This chapter
helps with that job, by giving you an idea of the types of attacks you need to
watch out for and then walking you through how to avoid those attacks with your
PHP code.

Exploring PHP Vulnerabilities
To avoid attacks, you first need to know where they’ll come from. It doesn’t do
any good to barricade the front door, if you leave the windows wide open. The
majority of attacks against your web applications are avoidable by following some
basic PHP coding rules.

Chapter 4

IN THIS CHAPTER

 » Identifying PHP attacks

 » Stopping cross-site scripts

 » Hiding your files

 » Watching for data spoofing

 » Handling data safely

376 BOOK 4 PHP

There are thousands of different ways for an attacker to break into your PHP pro-
gram, but most of them boil down into four general categories:

 » Cross-site scripting

 » Data spoofing

 » Invalid data

 » Unauthorized file access

Each of these attacks has different causes and results, as well as different methods
for you to use to block them. The following sections examine each of these attacks
in depth.

Cross-site scripting
Cross-site scripting (known as XSS) is quite possibly the most dangerous type of
attack made on dynamic web applications. The main idea of an XSS attack is to
embed malicious JavaScript code in data that the attacker submits to the web
application as part of the normal data input process. When the web application
tries to display the data in a client browser, the JavaScript is pushed to the client
browser that’s viewing the website and runs.

Follow these steps to watch an XSS exploit in action:

1. Open your favorite text editor, program editor, or integrated development
environment (IDE) package.

2. Type the following code into the editor window:

<!DOCTYPE html>

<html>

<head>

<title>XSS Test</title>

<style>

 input {

 margin: 5px;

 }

</style>

</head>

<body>

<h2>Please enter your first name:</h2>

<form action="xsstest.php" method="post">

<input type="text" name="fname">

Co
ns

id
er

in
g

PH
P

Se
cu

ri
ty

CHAPTER 4 Considering PHP Security 377

<input type="submit" value="Submit name">

</form>

</body>

</html>

3. Save the file as xssform.html in the DocumentRoot folder for your web
server.

For XAMPP on Windows, that’s c:\xampp\htdocs; for XAMPP on macOS, that’s
/Applications/XAMPP/htdocs.

4. Open a new tab or window in your browser, and type the following code:

<!DOCTYPE html>

<html>

<head>

<title>XSS Test</title>

</head>

<body>

<h1>XSS Test</h1>

<?php

 $fname = $_POST['fname'];

 echo "<p>Welcome, $fname</p>\n";

?>

<h2>This is the end of the test</h2>

</body>

</html>

5. Save the file as xsstest.php in the DocumentRoot folder for your web
server.

6. Open the XAMPP Control Panel, and then start the Apache web server.

7. Open your browser, and enter the following URL:

http://localhost:8080/xssform.html

You may need to change the TCP port used to match your web server.

8. In the form, type the following code in the Name text box:

<script>alert("Hello!");</script>

9. Click the Submit button to continue.

10. Close the browser window when you’re done with the test.

378 BOOK 4 PHP

When you submit the form with the embedded JavaScript code, you should get the
output as shown in Figure 4-1.

The PHP code sent the JavaScript to the browser as part of the echo statement
output, and the browser dutifully ran the JavaScript code. This example is harm-
less, because it just displays a simple alert message, but a real attacker would
embed much more malicious code.

Some browsers, such as Safari and Chrome, have built-in XSS attack detection,
which may trigger on this test and block the JavaScript code from running. If you
don’t see the alert() pop-up box, open the developer tools for your browser and
see if there’s a notice that the browser blocked a potential XSS attempt.

The “cross-site” part of the XSS name comes from where the <script> tag sends
the browser to retrieve the JavaScript code file. In the previous example, I just
submitted embedded JavaScript code directly within the script element. Remember:
The <script> HTML5 tag can also reference an external JavaScript file, which
the browser will load and run. An attacker can specify the src attribute in the
<script> tag to redirect the browser to run JavaScript located on a rogue server
anywhere in the world.

There are two different methods of carrying out an XSS attack:

 » Reflected attack: The attacker places the rogue script as a link in the
submitted data. Victims must actively click the link to launch the XSS attack.

FIGURE 4-1:
The output

from entering
 embedded

JavaScript
in a form.

Co
ns

id
er

in
g

PH
P

Se
cu

ri
ty

CHAPTER 4 Considering PHP Security 379

 » Persistent attack: The attacker places the rogue script as data that the
browser displays when the web page loads (as in the previous example).

Persistent attacks are very dangerous. The malicious script runs as soon as an
unsuspecting website visitor opens the web page that contains the script as part
of the content, without any actions required by the victim. For example, if an
attacker posts a blog comment that contains malicious JavaScript code, every time
the web application displays that blog comment on a client browser, the malicious
script is run.

Data spoofing
Our dynamic web applications use all types of data to produce content. All too
often, though, we assume the values stored in a particular variable are placed
there by our program and are correct. However, that may not always be the case.

Another popular form of attack is data spoofing (externally inserting fraudulent
data into a PHP program code). The biggest culprit of this attack is the register_
globals setting in the php.ini configuration file for the PHP server (see Book 1,
Chapter 2).

The register_globals setting was originally intended to make life easier for PHP
developers. When that setting is enabled, PHP automatically converts any data
passed via the GET or POST methods into a PHP variable.

For example, let’s say you build a form that contains the following input element:

<input type="text" name="fname">

When the PHP server receives the form data, it automatically creates a PHP
 variable named $fname, and assigns it the value passed from the form data field
with that name. This feature certainly makes your coding life easier, but it adds a
new problem.

Suppose your application uses an authentication method to validate the admin-
istrators of your website. When an administrator logs in, you set a variable indi-
cating that the session is an administrative session and then check that variable
whenever the user attempts to do some admin work. The code for that would look
something like this:

if ($admin == 1) {

 do some admin functions

} else {

 echo "Sorry, you do not have permission";

}

380 BOOK 4 PHP

The application assumes the $admin variable is set to a value of 1 when the user is
an authenticated administrator.

Now, consider what would happen if an attacker figured this out and the
 register_globals setting in PHP were enabled. All the attacker would need to do
is spoof the $admin variable with a phony value. And all that attack requires is to
use this URL:

http://yourhost.com/index.php?admin=1

The register_globals setting allows the PHP server to retrieve the value set in
the GET method, create the variable $admin, and set it to a value of 1. This will
then allow the attacker to perform the admin function in the application without
having to log in!

Newer versions of PHP disable the register_globals setting by default, but that
setting is still present. It’s never a good idea to enable the register_globals
setting. Just retrieve any data you need using the standard $_GET[] and $_POST[]
array variables. It’s worth the effort!

Invalid data
Invalid data comes in all shapes and sizes. Often invalid data is just the result of a
site visitor not paying close enough attention to the form fields and entering the
wrong data into the wrong field, such as typing a zip code into a city name data
field. Other times there may be some malicious intent to the invalid data, such
as entering an invalid email address into a contact form on purpose to remain
anonymous. It’s your job as the application developer to anticipate invalid data
and try to prevent it before it becomes a problem in the application.

There are two schools of thought on data validation:

 » Client-side data validation

 » Server-side data validation

The following sections dig a little deeper into just how these two methods differ.

Client-side data validation
As you can probably guess, client-side data validation requires adding some Java-
Script code to your web-page form to ensure site visitors enter the proper data
into the proper data fields. Book 3, Chapter 4, details how to watch for form events

Co
ns

id
er

in
g

PH
P

Se
cu

ri
ty

CHAPTER 4 Considering PHP Security 381

and trigger JavaScript code to check as the site visitor types the data. If any invalid
data is entered, the JavaScript can block sending the form data to the server.

Don’t rely on JavaScript data validation alone, though. Your website visitors can
disable JavaScript in their browsers to get around it!

You can also use the HTML5 data-filtering elements and attributes that limit the
range of possible values for a form field — for example, by using the new phone or
email input element types instead of just a standard text input element. The browser
won’t accept data that doesn’t match the format defined by the filters.

A combination of JavaScript, HTML5, and CSS produces a three-pronged approach
to client-side data validation. That combination allows you to monitor the data
your site visitors type into the data fields and then change the styles applied to
the data field accordingly. A common feature is to use the background color style
to indicate invalid data in a data field. When the site visitor enters invalid data,
JavaScript changes the data field background color to red.

Server-side data validation
Because the focus of this chapter is PHP, I talk more about server-side data
 validation. Server-side data validation is a little trickier in that you must wait for
the site visitor to submit the form before you can validate the data in your PHP
code. You can’t detect invalid data in real time, but you do have a few more tools
available for validating the data in your PHP code.

When the client browser sends the form data to the server, your PHP code retrieves
it from the $_GET[] or $_POST[] array variables and then can work on determining
which data is valid and which is invalid. Usually, there’s a set process that you can
undertake to validate data, such as making sure numeric values are really num-
bers or that text values don’t contain any extraneous characters that shouldn’t
be there (such as the semicolon character discussed in the SQL injection sidebar).

One common method used in PHP development is to create an array to contain the
“clean” data values retrieved from the table. As the code validates each data field
value, that value is placed into the array with the corresponding variable name
used as the key. The application doesn’t use any of the data retrieved directly from
the form; instead, it only accesses data values from the array of cleaned data val-
ues. That ensures that you won’t make any mistakes by accidentally using a data
value that hasn’t been validated.

There are a few PHP functions to help out with the data validation process, which
I discuss later in this chapter.

382 BOOK 4 PHP

Unauthorized file access
The PHP code that you write for your web applications may contain lots of privi-
leged information, whether it’s database user accounts for accessing a database
or admin passwords that it checks to validate admin login attempts. Being able to
properly protect your PHP files from unauthorized viewing is a must.

By default, any .php files accessed via the web server are passed to the PHP server
and processed, so if attackers try to access a .php file directly, they only see the
output from the file, not the actual code. However, if an attacker manages to break
into the DocumentRoot folder using some attack, your PHP code will be wide open.
Your job as a PHP developer is to try to hide your code from these types of attacks.

One method of doing that is to utilize the include() function. Chapter 1 of this
minibook covers how to use the include() function to access PHP and HTML5
code located in a separate file from within a program file. The include() function
isn’t bound by the web server DocumentRoot setting folder location; it can retrieve
data from anywhere on the server that it has read access to.

You can leverage that feature by storing all your application PHP code as include
files outside the DocumentRoot boundaries. Then you only need to place the main
index.php template file into the DocumentRoot folder for site visitors to access.

The main template file defines the different sections of the web page, and calls the
appropriate include files for each one:

SQL INJECTION
Possibly the most dangerous attack involving invalid data is the SQL injection attack.
With SQL injection, an attacker embeds a SQL statement inside form field data, hoping
that the application will forward the data to a database server without validating it and
that the database server will run the SQL statement. The embedded SQL statement
usually performs some type of malicious action, such as deleting a table, or at least all
the data within the table.

If your application uses a database, it’s important to block SQL injection attempts within
form data. SQL injections usually involve embedding a semicolon to separate out the
SQL statement. Always validate input data looking for embedded semicolons to block
these types of attacks.

Co
ns

id
er

in
g

PH
P

Se
cu

ri
ty

CHAPTER 4 Considering PHP Security 383

<body>

<header>

<?php include("/secretlocation/header.inc.php"); ?>

</header>

<nav>

<?php include("/secretlocation/navigation.inc.php");?>

</nav>

<main>

<?php

$content = $_GET['content'];

switch ($content) {

 case "initial":

 include("/secretlocation/initial.inc.php");

 break;

 case "registration":

 include("/secretlocation/registration.inc.php");

 break;

 case "query":

 include("/secretlocation/query.inc.php");

 break;

 case "newdata":

 include("/secretlocation/newdata.inc.php");

 break;

 default:

 echo "<p>Sorry, invalid page location</p>\n";

}

?>

</main>

<aside>

<?php include("/secretlocation/aside.inc.php"); ?>

</aside>

<footer>

<?php include("/secretlocation/footer.inc.php"); ?>

</footer>

</body>

Each section of the web page uses a separate include file to load the content for the
section. A GET variable controls what content displays in the main section of each
web page. The content HTML variable contains the name of the include file to use
for each feature of the application. If an attacker tries to set the content HTML
variable to some other value, an error message displays.

Now all the actual PHP code is safely stored away in include files located outside
the DocumentRoot folder area of the web server. This method isn’t foolproof, but
it does provide an extra layer of security for your data.

384 BOOK 4 PHP

PHP Vulnerability Solutions
Fortunately, the PHP programming language provides several features that you
can utilize to help you avoid all these types of attacks. This section walks through
the different tools that you have at your disposal, showing you how best to use
them to protect your website data and code.

Sanitizing data
Just like sanitizing your kitchen is a good idea to help protect you from nasty bugs
and viruses, sanitizing your PHP data helps render any harmful code injected into
the data harmless. The idea is to detect any embedded HTML code and make it
harmless by removing the HTML5 tags that trigger actions in the browser. This
stops any type of XSS attack dead in its tracks.

The best defense against XSS attacks is to block any types of HTML code from the
data your site visitors enter, both as they try to input it and as your application
tries to output it. Two functions are good for this:

 » htmlspecialchars()

 » filter_var()

The following sections takes a closer look at how to use these functions to help
make your web application safer.

Using htmlspecialchars()
The htmlspecialchars() function detects HTML5 tags embedded in a data string
and converts the greater-than and less-than symbols in the tags to the HTML5
entity codes > and <. This doesn’t remove the tags from the data; instead,
it turns them to ordinary text that displays as normal content.

Here’s the format for the htmlspecialchars() function:

htmlspecialchars(string [, flags [,encoding [,double]]])

By default, the htmlspecialchars() function encodes the following characters
that it finds in the data string:

 » Ampersand (&)

 » Double quote (")

Co
ns

id
er

in
g

PH
P

Se
cu

ri
ty

CHAPTER 4 Considering PHP Security 385

 » Single quote (')

 » Less than (<)

 » Greater than (>)

You can pick and choose which of these items the htmlspecialchars() func-
tion converts and which ones it allows through by specifying one or more flags.
Table 4-1 shows the flags that are available to choose from.

The encoding parameter allows you to define what character set encoding the data
uses, and the double parameter allows PHP to double-encode the data, also look-
ing for HTML5 entity codes embedded in the data and converting them as well.

The best way to get a handle on what htmlspecialchars() does is to watch it in
action. Follow these steps to test this out:

1. Open the xsstest.php file in your editor, program editor, or IDE package.

2. Change the line of code that retrieves the $_POST['fname'] array
variable to make it look like the following:

$fname = htmlspecialchars($_POST['fname']);

TABLE 4-1	 htmlspecialchars Flags
Flag Description

ENT_COMPAT Converts only double quotes.

ENT_QUOTES Converts both single and double quotes.

ENT_NOQUOTES Doesn’t convert either single or double quotes.

ENT_IGNORE Doesn’t convert anything.

ENT_SUBSTITUTE Replaces invalid code with Unicode replacement characters instead of returning an
empty string.

ENT_DISALLOWED Replaces invalid code with Unicode replacement characters instead of leaving them as is.

ENT_HTML401 Handles the code as HTML version 4.01.

ENT_XML1 Handles the code as XML version 1.

ENT_XHTML Handles the code as XHTML.

ENT_HTML5 Handles the code as HTML5.

386 BOOK 4 PHP

3. Save the file as xsstest.php in the DocumentRoot folder of your web
server.

4. Ensure that the web server is running and then open your browser and
enter the following URL:

http://localhost:8080/xssform.html

5. Enter the following text in the text box:

<script>alert("Hello!");</script>

6. Click the Submit button to submit the text.

7. Observe the output in the xsstest.php web page and then close the
browser window.

With the simple addition of the htmlspecialchars() function, you should now
see the output shown in Figure 4-2.

The htmlspecialchars() function converted the script element tags into plain
text and displayed the JavaScript code as regular text in the output. That’s not
ideal, but it did block the XSS attack from hitting the browser.

Using filter_var()
The filter_var() function is the Swiss Army knife of functions for protecting
data in your PHP applications. It provides a host of customized filters for finding

FIGURE 4-2:
The output from
adding the html
specialchars()

function.

Co
ns

id
er

in
g

PH
P

Se
cu

ri
ty

CHAPTER 4 Considering PHP Security 387

and sanitizing different types of data that could potentially cause harm in your
PHP application.

You control the behavior of the filter_var() function by specifying both options
and flags as parameters:

filter_var(string [, filter] [, flags])

The filter and flags parameters are optional, but almost always you’ll at
least specify the filter to use. The filter defines what class of characters the

filter_var() function should look for, and the flags parameter fine-tunes
 subsets of characters within the filter class.

What makes the filter_var() function so versatile is that it can both sanitize
(remove) and validate (test) string data. Table 4-2 shows the data-sanitizing
options that you can use.

TABLE 4-2	 The filter_var Data-Sanitizing Options
Option Description

FILTER_SANITIZE_EMAIL Removes invalid characters from an email address.

FILTER_SANITIZE_ENCODED Encodes a string to make a valid URL.

FILTER_SANITIZE_MAGIC_QUOTES Escapes embedded quotes.

FILTER_SANITIZE_NUMBER_FLOAT Removes all characters except digits and float symbols.

FILTER_SANITIZE_NUMBER_INT Removes all characters except digits and integer symbols.

FILTER_SANITIZE_SPECIAL_CHARS Removes quotes, as well as greater-than, less-than, and
ampersand characters.

FILTER_SANITIZE_FULL_SPECIAL_CHARS Converts the greater-than and less-than symbols in HTML5
tags to entity codes (the same as htmlspecialchars()).

FILTER_SANITIZE_STRING Removes all HTML5 tags.

FILTER_SANITIZE_STRIPPED Removes all HTML5 tags.

FILTER_SANITIZE_URL Removes all invalid URL characters.

FILTER_UNSAFE_RAW Does nothing, the default action.

388 BOOK 4 PHP

The filter_var() function allows you to customize just what data gets sanitized
from the input data and what data is allowed to pass through. Follow these steps
to test this out:

1. Open the xsstest.php file in your editor.

2. Change the line that assigns the $fname variable to this:

$fname = filter_var($_POST['fname'], FILTER_SANITIZE_STRING);

3. Save the file as xsstest.php in the DocumentRoot folder for your web server.

4. Ensure that your web server is running, and then open your browser and
type the following URL:

http://localhost:8080/xsstest.php

5. Enter the following text into the text box:

http://localhost:8080/xssform.html

6. Click the Submit button.

7. Observe the output from the xsstest.php program and then close the
browser window.

The filter_var() function not only disables the script element in the text, but
also completely removes the opening and closing tags, as shown in Figure 4-3.

The embedded JavaScript code is still visible, but at least the <script> tags are
completely removed from the data, rendering the attack useless.

FIGURE 4-3:
The output

from adding the
filter_var()

function.

Co
ns

id
er

in
g

PH
P

Se
cu

ri
ty

CHAPTER 4 Considering PHP Security 389

The filter_var() function is also a great way to extract numeric data from a
string, using the FILTER_SANITIZE_NUMBER_INT option.

Validating data
Detecting all types of invalid data can be impossible, but PHP provides a few ways
for you to at least detect some types of invalid data to help make things at least
a little bit easier. This section describes the PHP functions available for helping
detect when a site visitor has attempted to input invalid data into a form data field.

Validating data types
One primary goal for catching invalid data is to at least determine that the input
data is the correct data type. PHP provides a series of functions to do that (see
Table 4-3).

Of these, the is_numeric() function is the most useful. It comes in handy to
 validate simple numeric data that your site visitors enter into forms, such as ages
or quantities.

To test this out, follow these steps:

1. Open your editor and type the following code:

<!DOCTYPE html>

<html>

<head>

<title>Data Type Test</title>

<style>

 input {

TABLE 4-3	 PHP Data Validation Functions
Function Description

is_bool() Returns TRUE if the value is a Boolean data type.

is_float() Returns TRUE if the value is in valid float format.

is_int() Returns TRUE if the value is an integer value.

is_null() Returns TRUE if the value is NULL.

is_numeric() Returns TRUE if the value is in a valid numeric format.

is_string() Returns TRUE if the value is a string as opposed to a number.

390 BOOK 4 PHP

 margin: 5px;

 }

</style>

</head>

<body>

<h1>Please enter data into the form fields</h1>

<form action="typetest.php" method="post">

<label>Last Name</label>

<input type="text" name="name">

<label>Email address</label>

<input type="text" name="email">

<label>Age</label>

<input type="text" name="age">

<input type="submit" value="Submit form">

</form>

</body>

</html>

2. Save the file as typetest.html in the DocumentRoot folder for your web
server.

3. Open a new tab or window in your editor, and type the following code:

<!DOCTYPE html>

<html>

<head>

<title>Data Type Test</title>

<style>

 .warning {

 color:red;

 }

</style>

</head>

<body>

<h1>Form results:</h1>

<?php

$name = htmlspecialchars($_POST['name']);

$email = htmlspecialchars($_POST['email']);

$age = htmlspecialchars($_POST['age']);

echo "<p>Name: $name</p>\n";

echo "<p>Email: $email</p>\n";

if (is_numeric($age)) {

Co
ns

id
er

in
g

PH
P

Se
cu

ri
ty

CHAPTER 4 Considering PHP Security 391

 echo "<p>Age: $age</p>\n";

} else {

 echo "<p class='warning'>Please enter a valid age</p>\n";

}

?>

Return to form

</body>

</html>

4. Save the file as typetest.php in the DocumentRoot folder for your web
server.

5. Ensure that the web server is running and then open your browser and
enter the following URL:

http://localhost:8080/typetest.html

6. Enter your name and numeric age into the form and click the Submit
button.

7. Observe the results on the typetest.php page output and then click the
Return to Form link.

8. This time, enter your name and a text value for the age and then click the
Submit button.

9. Observe the results in the typetest.php page output.

10. Close your browser window when you’re done.

In this example, the is_numeric() function detects when the site visitor enters an
invalid value for the age and displays a warning message, as shown in Figure 4-4.

The is_numeric() function can’t stop site visitors from lying about their ages,
but at least it can prevent someone from entering text into the age data field.

Validating data format
Testing for valid data types is fine when you’re working with numeric values, but
it doesn’t help all that much for text values such as names, home addresses, and
email addresses. The is_string() function can tell you that the value is a valid
string value, but not the format of the data contained within the string.

392 BOOK 4 PHP

This is another time where the filter_var() function can come in handy. Not
only can the filter_var() function sanitize data, but it can also validate data
formats for us! Table 4-4 shows the data validation options that are available for
the filter_var() function.

The email address check in filter_vars() comes in handy when you need to
validate email addresses entered into contact forms. Follow these steps to test
that out:

FIGURE 4-4:
The result

from entering
an invalid age
value into the

typetest.html
form.

TABLE 4-4	 The filter_var() Data Validation Options
Option Description

FILTER_VALIDATE_BOOLEAN Returns TRUE if the value is a valid Boolean value.

FILTER_VALIDATE_EMAIL Returns TRUE if the value is in a valid email address format.

FILTER_VALIDATE_FLOAT Returns TRUE if the value is in a valid float format.

FILTER_VALIDATE_INT Returns TRUE if the value is in a valid integer format.

FILTER_VALIDATE_IP Returns TRUE if the value is in a valid IP address format.

FILTER_VALIDATE_MAC Returns TRUE if the value is in a valid MAC address format.

FILTER_VALIDATE_REGEXP Returns TRUE if the value matches the specified regular expression.

FILTER_VALIDATE_URL Returns TRUE if the value is in a valid URL format.

Co
ns

id
er

in
g

PH
P

Se
cu

ri
ty

CHAPTER 4 Considering PHP Security 393

1. Open the typetest.php file in your editor.

2. Modify the code so that it looks like the following:

<!DOCTYPE html>

<html>

<head>

<title>Data Type Test</title>

<style>

 .warning {

 color:red;

 }

</style>

</head>

<body>

<h1>Form results:</h1>

<?php

$name = htmlspecialchars($_POST['name']);

$emal = htmlspecialchars($_POST['email']);

$age = htmlspecialchars($_POST['age']);

echo "<p>Name: $name</p>\n";

if (filter_var($email, FILTER_VALIDATE_EMAIL)) {

 echo "<p>Email: $email</p>\n";

} else {

 echo "<p class='warning'>Please enter a valid

 email address</p>\n";

}

if (is_numeric($age)) {

 echo "<p>Age: $age</p>\n";

} else {

 echo "<p class='warning'>Please enter a valid

 age</p>\n";

}

?>

Return to form

</body>

</html>

3. Save the file as typetest.php in the DocumentRoot folder of your web
server.

394 BOOK 4 PHP

4. Ensure that the web server is running and then open your browser and
enter the following URL:

http://localhost:8080/typetest.html

5. Enter a valid name and age, but enter an email address in an invalid
format.

6. Click the Submit button to submit the form data.

7. Observe the output.

8. Click the link to return to the form and try out different email address
formats to see what gets caught by the data validation and what doesn’t.

9. Close your browser window when you’re done.

The added filter_var() validation check looks for the email address to be in the
proper format of name@hostname. If it is, the filter_var() function returns a
TRUE value, which triggers the if...else statement to display the data. If it isn’t,
the else code block triggers and displays a warning, as shown in Figure 4-5.

Again, this check is not foolproof — it can only check the format of an email
address. It doesn’t test the account to make sure it’s a live account. But at least
this is a start!

FIGURE 4-5:
The result from

entering an
invalid email

address.

mailto:name@hostname

CHAPTER 5 Object-Oriented PHP Programming 395

Object-Oriented PHP
Programming

So far, all the PHP scripts presented in this minibook have followed the proce-
dural style of programming. With procedural programming, you create vari-
ables and functions within your code to perform certain procedures, such as

storing values in variables, and then checking them with conditional statements.
The data you use and the functions you create are completely separate entities,
with no specific relationship to one another. With object-oriented programming,
on the other hand, variables and functions are grouped into common objects that
you can use in any program. In this chapter, you learn what object-oriented pro-
gramming is and how to use it in your web applications.

Understanding the Basics of
Object-Oriented Programming

Before you can start working on object-oriented programming (OOP), you need to
know how it works. OOP uses a completely different paradigm from coding than
what I cover earlier in this minibook. OOP requires that you think differently about
how your programs work and how you code them.

Chapter 5

IN THIS CHAPTER

 » Defining object-oriented
programming

 » Creating objects

 » Using objects

 » Customizing objects

396 BOOK 4 PHP

With OOP, everything is related to objects. (I guess that’s why they call it object-
oriented programming!) Objects are the data you use in your applications, grouped
together into a single entity.

For example, if you’re writing a program that uses cars, you can create a Car object
that contains information on the car’s weight, size, color, engine, and number of
doors. If you’re writing a program that tracks people, you might create a person
object that contains information about each person’s name, date of birth, height,
weight, and gender.

OOP uses classes to define objects. A class is the written definition in the program
code that contains all the characteristics of the object, using variables and func-
tions. The benefit of OOP is that after you create a class for an object, you can use
that same class in any other application. Just plug in the class definition code and
put it to use!

An OOP class contains members. There are two types of members:

 » Properties: Class properties (also called attributes) denote features of the
object, such as the car’s weight or the person’s name. A class can contain
many properties, with each property describing a different feature of
the object.

 » Methods: Class methods are similar to the standard PHP functions that you’ve
been using. A method performs an operation using the properties in a class.
For instance, you could create class methods to retrieve a specific person
from a database, or change the address property for an existing person. Each
method should be contained within the class and perform operations only in
that class. The methods for one class shouldn’t deal with properties in other
classes.

Defining a class
Defining a class in PHP isn’t too different from defining a function. To define a
new class, you use the class keyword, along with the name of the class, followed
by any statements contained in the class.

Here’s an example of a simple class definition:

class Product {

 public $description;

 public $price;

 public $inventory;

 public $onsale;

O
bj

ec
t-

O
ri

en
te

d
PH

P
Pr

og
ra

m
m

in
g

CHAPTER 5 Object-Oriented PHP Programming 397

 public function buyProduct($amount) {

 $this->inventory -= $amount;

 }

}

The class name you choose must be unique within your program. Class names fol-
low the same rules as PHP variable names. Although it’s not required, program-
mers often start class names with an uppercase letter to help distinguish them in
program code.

This example defines four property members and one method member. Each
member is defined using one of three visibility classifications. The visibility of the
member determines where you can use or reference that member. There are three
visibility keywords used in PHP:

 » public: The member can be accessed from outside the class code.

 » private: The member can only be accessed from inside the class code.

 » protected: The member can only be accessed from a child class. (I talk about
that a little later in the “Extending Classes” section.)

The Product class example declares all the members to be public, so you can ref-
erence them anywhere in your PHP code.

The buyProduct() method uses an odd variable name in the function:

$this->inventory

The $this variable is a special identifier that references the current object of the
class. In this example, it points to the $inventory property of the object. Notice
the removal of the dollar sign from the inventory property when referencing it
this way. This helps PHP know that you’re referencing the $inventory property
from within the class object and not the class itself.

This code defines the makeup of the class, but it doesn’t actually do anything with
it. The next section shows you how to actually use your class template to create
objects.

Creating an object instance
To use a class, you have to instantiate it. When you instantiate a class, you create
what’s called an instance of the class in your program. Each instance represents

398 BOOK 4 PHP

one occurrence of the object within the program. To instantiate an object in PHP
code, you use the following format:

$prod1 = new Product();

This creates the object called $prod1 using the Product class. When you instanti-
ate an object, you can access the public members of that class directly from your
program code:

$prod1->description = "carrot";

$prod1->price = 1.50;

$prod1->inventory = 10;

$prod1->onsale = false;

This code sets values for each of the properties for the object. Notice the -> sym-
bol in use again. It tells PHP that you’re referencing the properties and methods
specifically for the $prod1 object.

The $prod1 variable now contains these values set for the object properties, and
you can use it anywhere in your PHP code to reference the properties. The same
applies when you need to use a public method of an object:

$prod1->buyProduct(4);

This calls the buyProduct() method for the class object, passing the value of 4.
Because the buyProduct() method alters the $inventory property of the object,
the next time you reference the $prod1->inventory property in your code, it’ll
have the value of 6.

You can instantiate as many instances of a class as you need within your program.
Just make sure that each instance uses a different variable name:

$prod2 = new Product();

$prod2->description = "eggplant";

$prod2->price = 2.00;

$prod2->inventory = 5;

$prod2->onsale = true;

PHP will keep the two instances of the Product class completely separate,
 maintaining the property values for each one.

O
bj

ec
t-

O
ri

en
te

d
PH

P
Pr

og
ra

m
m

in
g

CHAPTER 5 Object-Oriented PHP Programming 399

Follow these steps to test out creating and using classes in PHP:

1. Open your favorite text editor, program editor, or integrated development
environment (IDE) package.

2. Type the following code into the editor window:

<!DOCTYPE html>

<html>

<head>

<title>PHP OOP Test</title>

</head>

<body>

<h1>Testing PHP OOP code</h1>

<?php

class Product {

 public $description;

 public $price;

 public $inventory;

 public $onsale;

 public function buyProduct($amount) {

 $this->inventory -= $amount;

 }

}

$prod1 = new Product();

$prod1->description = "Carrots";

$prod1->price = 1.50;

$prod1->inventory = 10;

$prod1->onsale = false;

echo "<p>Just added $prod1->description<p>\n";

$prod2 = new Product();

$prod2->description = "Eggplants";

$prod2->price = 2.00;

$prod2->inventory = 5;

$prod2->onsale = true;

echo "<p>Just added $prod2->description<p>\n";

echo "<p>Now buying 4 carrots...<p>\n";

$prod1->buyProduct(4);

400 BOOK 4 PHP

echo "<p>Inventory of $prod1->description is now

 $prod1->inventory</p>\n";

echo "<p>Inventory of $prod2->description is still

 $prod2->inventory</p>\n";

?>

</body>

</html>

3. Save the file as ooptest1.php in the DocumentRoot folder for your web
server.

For XAMPP on Windows, that’s c:\xampp\htdocs; for XAMPP on macOS, that’s
/Applications/XAMPP/htdocs.

4. Open the XAMPP Control Panel and then start the Apache web server.

5. Open your browser, and enter the following URL:

http://localhost:8080/ooptest1.php

You may need to change the TCP port to match your web server.

6. Close the browser window when you’re done.

When you run the ooptest1.php file, you should see the output shown in
Figure 5-1.

FIGURE 5-1:
The output from

the ooptest1.
php program.

O
bj

ec
t-

O
ri

en
te

d
PH

P
Pr

og
ra

m
m

in
g

CHAPTER 5 Object-Oriented PHP Programming 401

The example code defines the Product class, which contains the four properties
and one method that has already been discussed. After the Product class defi-
nition, the code creates two instances of the Product class: $prod1 and $prod2.
When using classes, you need to define the class first in the code before you create
an instance of it.

After creating the two instances, the code uses the buyProduct() method for
the $prod1 instance to reduce the inventory by 4. Then it uses two echo state-
ments to display the inventory properties for the two instances. Notice that the
buyProduct() method reduced the inventory of the $prod1 instance, but not the
$prod2 instance, showing that the two instances are, indeed, separate objects in
the program.

Using Magic Class Methods
No, you won’t be learning any new tricks involving smoke and mirrors. Magic
class methods are built-in method names in PHP that apply to all class objects. You
can redefine them in your code to provide additional functionality to your PHP
classes. This process is called overloading or overriding. In overloading, you define
a method in your class code with the same name as an existing method. PHP uses
the newly defined method when you call it from your program code in the class
object.

Magic class methods are most often used to help provide common functionality
for classes, such as creating a new class object, copying an existing class object, or
displaying class objects as text. The PHP developers identify magic class methods
by using a double underscore at the start of the method name.

The following sections walk through how to use some of the more common magic
class methods in your own classes.

Defining mutator magic methods
Mutator magic methods are methods that change the value of a property that you
set with the private visibility. These are also commonly called setters.

The class example in the previous section used the public visibility feature for
the class properties, but that’s not always a good thing to do. That means that
any application can directly access the properties and change them to whatever
values it wants. That could be dangerous, and it’s somewhat frowned upon in OOP
circles.

402 BOOK 4 PHP

The preferred way to handle class properties is to make them private so external
programs can’t change them directly. Instead, to manipulate the data, external
programs are forced to use mutator magic class methods that interface with
the properties.

The mutator magic method in PHP is __set() (note the leading double under-
scores). You use the mutator magic method to set all the values of the properties
in the class with a single method definition:

public function __set($name, $value) {

 $this->$name = $value;

}

The mutator uses two parameters: the name of the property to set and the value to
assign to the property. Where the magic comes into play is with how PHP uses the
mutator. In your PHP application code, you don’t actually have to call the __set()
mutator method. You can define the $description property just by using a simple
assignment statement:

$prod1->description = "Carrots";

PHP automatically knows to look for the __set() mutator method defined for the
class and runs it, passing the appropriate property name and value.

Even though the $description property is set to the private visibility, by defin-
ing the mutator magic method you can allow external programs to assign a value
to the property. The benefit of using mutators, though, is that you can control how
external programs use the properties you define for the class.

With the mutator definition, you can place any code you need to control property
features, such as ranges of values allowed or the allowed settings applied to the
property. For example, you could so something like this:

public function __set($name,$value) {

 if ($name == "price" && $value < 0) {

 $this->price = 0;

 } else {

 $this->$name = $value;

 }

}

This example checks if the property being set is the $price property. If it is, it
checks if the value is less than 0. If the value is less than 0, the price is set to 0
instead of the supplied price value. This gives you a way to control the value that
is set for the price from external programs that use the class object.

O
bj

ec
t-

O
ri

en
te

d
PH

P
Pr

og
ra

m
m

in
g

CHAPTER 5 Object-Oriented PHP Programming 403

Defining accessor magic methods
Accessor magic methods are methods you use to access the private property values
you define in the class. Creating special methods to retrieve the current property
values helps create a standard for how other programs use your class objects.
These methods are often called getters because they retrieve (get) the value of the
property.

You define the accessor using the special __get() method:

public function __get($name) {

 return $this->$name;

}

That’s all there is to it! Accessor methods aren’t overly complicated; they just
return the current value of the property. To use them you just reference the prop-
erty name as normal:

echo "<p>Product: $prod1->description</p>\n";

PHP automatically looks for the accessor method to retrieve the property value.
Follow these steps to try creating and using a class definition with mutators and
accessors:

1. Open your editor and type the following code:

<!DOCTYPE html>

<html>

<head>

<title>PHP OOP Test</title>

</head>

<body>

<h1>Testing PHP OOP setters and getters</h1>

<?php

class Product {

 private $description;

 private $price;

 private $inventory;

 private $onsale;

 public function __set($name, $value) {

 if ($name == "price" && $value < 0) {

 echo "<p>Invalid price set<p>\n";

 $this->price = 0;

 } elseif ($name == "inventory" && $value < 0) {

404 BOOK 4 PHP

 echo "<p>Invalid inventory set: $value</p>\n";

 } else {

 $this->$name = $value;

 }

 }

 public function __get($name) {

 return $this->$name;

 }

 public function buyProduct($amount) {

 if ($this->inventory >= $amount) {

 $this->inventory -= $amount;

 } else {

 echo "<p>Sorry, invalid inventory requested:

 $amount</p>\n";

 echo "<p>There are only $this->inventory

 left</p>\n";

 }

 }

}

$prod1 = new Product();

$prod1->description = "Carrots";

$prod1->price = 1.50;

$prod1->inventory = 5;

$prod1->onsale = false;

echo "<p>Just added $prod1->inventory $prod1->description</p>\n";

echo "<p>Now buying 4 carrots...<p>\n";

$prod1->buyProduct(4);

echo "<p>Inventory of $prod1->description is now $prod1->inventory</p>\n";

echo "<p>Trying to set carrot inventory to -1:</p>\n";

$prod1->inventory = -1;

echo "<p>Now trying to buy 10 carrots...</p>\n";

$prod1->buyProduct(10);

echo "<p>Inventory of $prod1->description is now $prod1->inventory</p>\n";

?>

</body>

</html>

O
bj

ec
t-

O
ri

en
te

d
PH

P
Pr

og
ra

m
m

in
g

CHAPTER 5 Object-Oriented PHP Programming 405

2. Save the file as ooptest2.php in the DocumentRoot folder for your web
server.

3. Ensure that the web server is running, and then open your browser and
enter the following URL:

http://localhost:8080/ooptest2.php

4. Close the browser window when you’re done.

Figure 5-2 shows the output that you should see when you run the program in
your browser.

There’s a lot going on in this example, so hang in there with me! First, the PHP
code defines the Product class, using the four properties, but this time it defines
them with private visibility. Following that, the mutator and accessor magic
methods are defined. The mutator checks to ensure the price and inventory prop-
erties can’t be set to a negative value.

After the class definition, the code creates an instance of the Product class, and
experiments with the inventory values. First, it uses the buyProduct() method to
purchase four carrots. That works just fine.

Next, it uses the mutator to set the inventory property for the carrot object to a
negative value. The mutator code intercepts that request and prevents the inven-
tory from being set, instead producing an error message.

FIGURE 5-2:
The output from

the ooptest2.
php program.

406 BOOK 4 PHP

Finally, the code tries to use the buyProduct() method to purchase more carrots
than what’s set in inventory. The added code in the buyProduct() method pre-
vents that from happening.

Now the class definition is starting to do some useful functions for the applica-
tion. But wait, there are more magic methods available for you to use!

The constructor
Having to set property values using the mutator methods each time you instanti-
ate a new object can get old, especially if you have lots of properties in the class.
The constructor magic class method makes that job a lot easier.

The constructor magic method allows you to define values for the properties
when you create the new object instance. You can define as many or as few of the
 properties as you like within the class constructor definition. You do that with
the __construct() magic method:

public function __construct($name, $cost, $quantity) {

 $this->description = $name;

 if ($price > 0) {

 $this->price = $cost;

 } else {

 $this->price = 0;

 }

 $this->inventory = $quantity;

 $this->onsale = false;

}

This constructor for the Product class uses three parameters to assign values to
three of the class properties when you instantiate the class. It also automatically
sets the $onsale property to a false value for each new class instance. To use the
constructor, you just provide the three property values as parameters to the class:

$prod1 = new Product("Carrot", 1.50, 10);

When you define a constructor, you have to make sure that the property values
are provided in the correct order and data type when you instantiate a new object.
If you provide too few arguments to the constructor, PHP will produce an error
message. If you provide the right number of arguments but in the wrong order,
you may not run into a problem until PHP tries to use the properties in the code.

O
bj

ec
t-

O
ri

en
te

d
PH

P
Pr

og
ra

m
m

in
g

CHAPTER 5 Object-Oriented PHP Programming 407

The destructor
Handling memory management in PHP programs is normally a lot easier than
with some other programming languages. By default, PHP recognizes when a
class instance is no longer in use and automatically removes it from memory.
However, sometimes a program might need to do some type of “cleanup” work
for the class object before PHP removes it from memory.

You can specify a magic class method that PHP automatically attempts to run just
before it removes the instance from memory. These methods are called destructors.

Destructors come in handy with a class that works with files or databases to
ensure that the files or database connections are properly closed before the system
removes the class instance. This helps prevent any corruption in the data from an
improperly closed session being stopped.

You use the __destruct() magic class method to define any final statements to
process before PHP removes the class instance from memory:

public function __destruct() {

 statements

}

The __destruct() method doesn’t allow you to pass any parameters into the
method. All the statements you specify in the method need to be self-contained
and must not rely on any data from the main program. They can, however, rely
on properties within the class, because those should be available when the class
object is removed.

You can also manually remove an instance of an object from memory using the
unset() function:

unset($prod1);

When you run this command, PHP will process the destructor for the Product
class for the instance.

Although PHP will normally attempt to process a class destructor any time it
removes a class instance from memory, it may not always be successful. If the
program crashes or stops due to a fatal error, there’s no guarantee that PHP will
be able to run the destructor method code. If your application relies on closing
open files or database connections, it’s a good idea to use the unset() function to
manually remove the object from memory when you’re done using it!

408 BOOK 4 PHP

Copying objects
You can copy objects within PHP, but not using the standard assignment state-
ment. Instead you need to use the clone keyword:

$prod1 = new Product("Carrot", 1.50, 100);

$prod2 = clone $prod1;

Now the $prod2 variable contains a second object instance of the Product class,
with the same property values as the $prod1 instance.

You may however have a situation where you don’t want the copy of the object
to have all the same property values as the original. To do that, you can override
the __clone() magic method in your class code:

public function __clone() {

 $this->price = 0;

 $this->inventory = 0;

 $this->onsale = false;

}

With this code, when you clone an object only the description property will copy
over; all the other property values will be reset.

Displaying objects
Most likely, at some point in your application, you’ll want to display the properties
of your objects in the web page. However, if you try to use the echo statement to
display the object instance, you’ll get a somewhat ugly error message from PHP:

Recoverable fatal error: Object of class Product could not be converted to

string

You can solve that problem by defining the __toString() magic class method in
the class definition.

The __toString() magic method defines how you want PHP to handle the prop-
erties when you try to use the object as a string value, such as in the echo state-
ment. You just build the string value from the properties and store the output in a
variable. Then use the return statement to return the output variable back to the
main program. That code looks like this:

public function __toString() {

 $output = "<p>Product: " . $this->description . "
\n";

O
bj

ec
t-

O
ri

en
te

d
PH

P
Pr

og
ra

m
m

in
g

CHAPTER 5 Object-Oriented PHP Programming 409

 $output .= "Price: $" . number_format($this->price,2) . "
\n";

 $output .= "Inventory: " . $this->inventory . "
\n";

 $output .= "On sale: ";

 if ($this->onsale) {

 $output .= "Yes</p>\n";

 } else {

 $output .= "No</p>\n";

 }

 return $output;

}

With the __toString() magic method defined, you can now use an instance of the
Product class in an echo statement just like any variable:

echo $prod1;

And you’ll get the following output in your web page:

Product: Carrots

Price: 1.50

Inventory: 10

On sale: No

With the __tostring() magic method, displaying your class objects in the web
page is as easy as any other type of variable value!

Loading Classes
At the beginning of this chapter, I mention that OOP helps make it easy to reuse
program code in multiple applications. After you create the Product class for one
application, you can use the same code to use the Product class in any other
application that uses products.

However, having to retype the entire Product class code definition in each appli-
cation that uses it can be somewhat tedious, especially for complicated classes. To
solve that problem you can use our friend the include() function.

Just save your class definitions in separate PHP code files; then use the include()
function to include the files in any code that uses the class definitions. This
enables you to include only the files for the classes the application uses, without
having to retype the entire class code definition! That’s good, but there may still
be a downside to that.

410 BOOK 4 PHP

Complex applications may use dozens or possibly even hundreds of separate class
objects to manage and manipulate data in the application. Having to list each of
the class include files can still be somewhat tedious, as well as be prone to typing
mistakes that will cause errors. To solve that problem, the PHP developers created
the autoload feature, which determines when a class is being instantiated in the
program and then tries to load the appropriate include file that defines that class.
You implement that using the spl_autoload_register() function.

With the spl_autoload_register() function, you define the location for all of
the class include files based on the class name. With a little bit of programming
magic, you can make that task a breeze:

spl_autoload_register(function($class) {

 include $class . ".inc.php";

});

The anonymous function provided to the spl_autoload_register() function
defines the include file to load whenever a class is instantiated in the PHP code.
The anonymous function attempts to load the include file with the same name as
the class name, with an .inc.php file extension. Using this method, you must be
careful to save the class definition files using the class name as the filename, plus
the .inc.php file extension.

Follow these steps to try out using the autoload feature in PHP:

1. Open your editor and type the following code:

<?php

class Product {

 private $description;

 private $price;

 private $inventory;

 private $onsale;

 public function __construct($name, $cost, $quantity, $sale) {

 $this->description = $name;

 $this->onsale = $sale;

 if ($cost < 0) {

 $this->price = 0;

 } else {

 $this->price = $cost;

 }

 if ($quantity < 0) {

O
bj

ec
t-

O
ri

en
te

d
PH

P
Pr

og
ra

m
m

in
g

CHAPTER 5 Object-Oriented PHP Programming 411

 $this->inventory = 0;

 } else {

 $this->inventory = $quantity;

 }

 }

 public function __set($name, $value) {

 if ($name == "price" && $value < 0) {

 echo "<p>Invalid price set<p>\n";

 $this->price = 0;

 } elseif ($name == "inventory" && $value < 0) {

 echo "<p>Invalid inventory set: $value</p>\n";

 } else {

 $this->$name = $value;

 }

 }

 public function __get($name) {

 return $this->$name;

 }

 public function __clone() {

 $this->price = 0;

 $this->inventory = 0;

 $this->onsale = false;

 }

 public function __toString() {

 $output = "<p>Product: " . $this->description . "
\n";

 $output .= "Price: $" . number_format($this->price,2) . "
\n";

 $output .= "Inventory: " . $this->inventory . "
\n";

 $output .= "On sale: ";

 if ($this->onsale) {

 $output .= "Yes</p>\n";

 } else {

 $output .= "No</p>\n";

 }

 return $output;

}

 public function buyProduct($amount) {

 if ($this->inventory >= $amount) {

 $this->inventory -= $amount;

412 BOOK 4 PHP

 } else {

 echo "<p>Sorry, invalid inventory requested:

 $amount</p>\n";

 echo "<p>There are only $this->inventory

 left</p>\n";

 }

 }

 public function putonsale() {

 $this->onsale = true;

 }

 public function takeoffsale() {

 $this->onsale = false;

 }

}

?>

2. Save the file as Product.inc.php (note the capitalization) in the
DocumentRoot folder for your web server.

3. Open a new tab or window in your editor and type the following code:

<!DOCTYPE html>

<html>

<head>

<title>PHP Total OOP Test</title>

</head>

<body>

<h1>Testing the PHP class</h1>

<?php

spl_autoload_register(function($class) {

 include $class . ".inc.php";

});

$prod1 = new Product("Carrots", 4.00, 10, false);

echo "<p>Creating one product:</p>\n";

echo $prod1;

$prod2 = new Product("Eggplant", 2.00, 5, true);

echo "<p>Creating one product:</p>\n";

echo $prod2;

O
bj

ec
t-

O
ri

en
te

d
PH

P
Pr

og
ra

m
m

in
g

CHAPTER 5 Object-Oriented PHP Programming 413

echo "<p>Putting $prod1->description on sale:</p>\n";

$prod1->price = 3.00;

$prod1->putonsale();

echo "<p>New product status:</p>\n";

echo $prod1;

?>

</body>

</html>

4. Save the file as ooptest3.php in the DocumentRoot folder for your web
server.

5. Ensure that the web server is running and then open your browser and
enter the following URL:

http://localhost:8080/ooptest3.php

6. Close the browser window when you’re done.

When you run the ooptest3.php file, you should see the output shown in
Figure 5-3.

The code saves the Product class definition code in the Product.inc.php file
and then uses the autoloader feature to load the Product class include file when
needed. It instantiates two Product class objects using the constructor and dis-
plays them on the web page.

FIGURE 5-3:
The output from

the ooptest3.
php program.

414 BOOK 4 PHP

Following that, the code changes the price for the $prod1 object using the class
mutator and uses the putonsale() method to place the product on sale. The code
finishes with an echo statement so you can see the changes made to the class
object. Now things are really starting to get fancy!

Be very careful when naming class include files. If you’re using a server that’s
case-sensitive with filenames (such as Linux or macOS), then the include file-
name must match the case of the class name.

Extending Classes
No, I’m not talking about making you stay after school! OOP provides a way to
extend an existing class by adding additional members to an existing class. That’s
the whole beauty of OOP: You can take classes and use them as is, or you can mod-
ify just the pieces you need to fit your particular application.

Defining a new class that’s an extension of another class is called inheritance. The
new class (called the child) inherits all the public or protected members from the
original class (called the parent). You can then add new members to the child class
and even override members of the parent class. If you use the overridden mem-
bers, the child members take precedence over the parent members.

Members marked with private visibility aren’t inherited by child classes. If you
want a child class to inherit properties but don’t want them visible to external
programs, use the protected visibility setting.

To create a child class, you use the normal class definition format, along with the
extends keyword and the name of the class you’re extending:

class Soda extends Product {

For the new class, Soda, to inherit the Product class properties, you need to
change the visibility of the properties to protected:

class Product {

 protected $description;

 protected $price;

 protected $inventory;

 protected $onsale;

 ...

O
bj

ec
t-

O
ri

en
te

d
PH

P
Pr

og
ra

m
m

in
g

CHAPTER 5 Object-Oriented PHP Programming 415

With the properties set to protected visibility, the Soda child class will automati-
cally inherit the description, price, inventory, and onsale properties from the
Product class, along with all the public class methods.

In the child class definition, you can add additional properties and methods that
are unique to the child class:

private ounces;

public function restock($amount) {

 $this->inventory += $amount;
}

Notice that the restock() method uses the inventory property that was inherited
from the Product parent class. When you define a method in a child class, it’s only
available for objects that are instantiated from the child class. Objects instantiated
from the parent class won’t see that method.

Because the Soda child class contains an additional property, you need to override
the __construct() method from the parent class to add the new property. That
code looks like this:

public function __construct($name, $value, $amount, $sale,

 $size) {

 parent::__construct($name, $value, $amount,

 $sale);

 $this->ounces = $size;

}

The new constructor for the Soda child class requires five parameters. Note the
first line in the constructor code:

parent::__construct($name, $value, $amount, $sale);

The parent:: keyword tells PHP to run the constructor from the parent object.
This assigns values to those properties inherited from the parent. The property
unique to the child class is assigned a separate value from the parameters.

To instantiate a new child object you’d then just use the following:

$rootbeer = new Soda("Root Beer", 1.50, 10, false, 18);

Inside the child class definition, you can override any or all of the parent meth-
ods. Any methods that don’t override the child class objects can use the parent
methods.

416 BOOK 4 PHP

Follow these steps to test out using inheritance in your OOP PHP code.

1. Open the Product.inc.php file in your editor.

2. Change the private visibility keyword to protected.

Look for these four lines:

private $description;

private $price;

private $inventory;

private $onsale;

And change them to the following:

protected $description;

protected $price;

protected $inventory;

protected $onsale;

3. Save the file as Product.inc.php in the DocumentRoot folder for your web
server.

4. Open a new tab or window in your editor, and type the following code:

<?php

include("Product.inc.php");

class Soda extends Product {

 private $ounces;

 public function __construct($name, $value, $amount, $sale, $size) {

 parent::__construct($name, $value, $amount, $sale);

 $this->ounces = $size;

 }

 public function __toString() {

 $output = "<p>Product: " . $this->description . "
\n";

 $output .= "Price: $" . number_format($this->price,2) . "
\n";

 $output .= "Inventory: " . $this->inventory . "
\n";

 $output .= "On sale: ";

 if ($this->onsale) {

 $output .= "Yes
\n";

 } else {

 $output .= "No
\n";

O
bj

ec
t-

O
ri

en
te

d
PH

P
Pr

og
ra

m
m

in
g

CHAPTER 5 Object-Oriented PHP Programming 417

 }

 $output .= "Ounces: " . $this->ounces . "</p>\n";

 return $output;

 }

 public function restock($amount) {

 $this->inventory += $amount;
 }

}

?>

5. Save the file as Soda.inc.php in the DocumentRoot folder for your web
server.

6. Open yet another new tab or window in your editor, and type the
following code:

<!DOCTYPE html>

<html>

<head>

<title>Testing PHP Inheritance</title>

</head>

<body>

<h1>Testing inheritance in PHP OOP</h1>

<?php

spl_autoload_register(function($class) {

 include $class . ".inc.php";

});

$prod1 = new Soda("Root Beer", 1.25, 10, false, 18);

echo $prod1;

echo "<p>Buying 6 bottles:</p>\n";

$prod1->buyProduct(6);

echo $prod1;

echo "<p>Restocking 4 bottles:</p>\n";

$prod1->restock(4);

echo $prod1;

?>

</body>

</html>

418 BOOK 4 PHP

7. Save this file as ooptest4.php in the DocumentRoot folder for your web
server.

8. Ensure that the web server is running, and then open your browser and
enter the following URL:

http://localhost:8080/ooptest4.php

9. Close the browser, and stop the web server.

When you run the ooptest4.php code, you should see the output as shown in
Figure 5-4.

The Soda class code overrides both the constructor and the __toString() methods
of the Product parent class to accommodate the additional $ounces property. The
ooptest4.php code creates an instance of the Soda class, uses the buyProduct()
method from the parent class to buy bottles, and then uses the restock() method
from the child class to restock them. Notice that the child class object has access
to the public buyProduct() method from the parent class.

FIGURE 5-4:
The output from

the ooptest4.
php program.

CHAPTER 6 Sessions and Carts 419

Sessions and Carts

In the previous chapters of this minibook, I show you how to use the HTTP GET
and POST methods to send data from one web page to another. Although they
work fine for clicking links and submitting forms, they’re somewhat impracti-

cal to use for sharing data between all the web pages in an application. To do that
requires some other form of persistent data, someplace where you can temporar-
ily store it so that your PHP programs can access the data at any time from any
page. This is where sessions and carts help out. This chapter explains how they
work, why you shouldn’t be afraid of them, and how to use them as another piece
of your dynamic web applications.

Storing Persistent Data
Most dynamic web applications require some way of temporarily storing data
while site visitors work their way through the application web pages. I’m not
talking about long-term storage of data (I cover that in the next minibook). I’m
talking about short-term storage of data that one web page can store and another
web page retrieves, such as passing an authenticated user’s info through the web-
site. This helps your application track the site visitors and what they’re doing
within the application.

This is where HTTP cookies come into play. Cookies have received somewhat
of a bum rap in the web world, mainly because of a misunderstanding of how

Chapter 6

IN THIS CHAPTER

 » Storing data

 » Using cookies

 » Working with sessions

 » Playing with carts

420 BOOK 4 PHP

companies use them. A company can’t track all of your browsing history using
cookies, but it can track which of its advertisements you’ve visited. This helps the
marketing gurus target advertising to your browser based on which of the com-
pany’s links you’ve already visited. Cookies do have a valid place in the assembly
line of dynamic web application tools, playing a crucial function in being able to
keep track of individual site visitors in your application. It’s crucial that you know
how they work and how to use them.

This section walks through the basics of cookies, why you need them, and how to
safely (and responsibly) use them in your dynamic web applications.

The purpose of HTTP cookies
In the mainframe computer world, people who need to access programs running
on the system must first log in to the system. This usually requires entering some
type of data that uniquely identifies you, such as typing a user ID, placing your
finger on a scanner, or inserting a smart ID card that includes a unique encrypted
key. When the system authenticates that you are who you say you are, it allows
you access to the system and your data. This process starts what’s called a session.

The mainframe tracks every transaction you perform within the session. A system
administrator can look through the log file and identify the user who performed
each transaction on the system.

When you’ve finished entering transactions, you must log off of the system to
stop the session. If you forget to log out, another user can come in and enter new
transactions that the mainframe credits to your session.

On a mainframe system, keeping track of sessions is easy, because each user logs
in from a specific device (either a directly connected terminal or a persistent net-
work connection), performs transactions, and then logs out. Unfortunately, it’s
not that easy in our dynamic web applications.

The HTTP standard was intended to retrieve data from a remote server in an
anonymous, stateless manner. This means not having to deal with the formali-
ties of a session. In essence, a web session consists of a single transaction, and it
doesn’t even require an ID to identify the user.

Dynamic web applications are somewhat of a hybrid of these two environments.
You want to maintain the ease of an HTTP anonymous session, but you need to
track users and their transactions like a mainframe session. This is where cookies
come to save the day.

Se
ss

io
ns

 a
nd

 C
ar

ts

CHAPTER 6 Sessions and Carts 421

Cookies are data that a server can temporarily store in the browser of each site
 visitor. When the browser stores the cookie data, the server can retrieve that
information in later transactions with the site visitor. This allows the server (and,
thus, the server-side application) to identify individual site visitors and keep track
of what they’re doing within the application. This is the beginning of a true web
session.

Types of cookies
Before you start thinking chocolate chip and oatmeal raisin, let me start out by
saying we’re not talking about those types of cookies here. There are several dif-
ferent characteristics of HTTP cookies, each one defining a different way to use
the cookie. Table 6-1 lists the different HTTP cookie types you can use.

The standard type of cookie is the persistent cookie. Persistent cookies are sent by
the web server to be stored in the client browser for a specific amount of time.
Your application can store data in a persistent cookie and then access that data
any time in the future until the cookie expires.

As opposed to persistent cookies, session cookies only last for as long as the client
browser window stays open. When the site visitor closes the browser window, the
session cookies (and the data they contain) go away.

Third-party cookies are what gave cookies a bad name. With persistent and ses-
sion cookies, a web server can only retrieve and read the cookies that it sets — it
doesn’t have access to cookies set by other servers. This helps protect the privacy

TABLE 6-1	 Types of HTTP Cookies
Type Description

HttpOnly Can only be accessed via HTTP, not via JavaScript

Persistent Expires at a specific date/time or after a specific length of time

SameSite Can only be sent in requests from the same origin as the target
domain

Secure Can only be sent in HTTPS connections

Session Expires when the client browser window closes

Supercookie Uses a top-level domain as the origin, allowing multiple
websites access

Third-party Uses a domain that doesn’t match the URL domain for the web page

422 BOOK 4 PHP

of site visitors by preventing a single server from determining all the websites a
site visitor has visited. Third-party cookies use a loophole to get around that.

These days it’s very common for a web page to contain embedded advertisements
from other websites. Those embedded advertisements run code created by the
remote website and can set cookies from the remote website, storing the location
of the main website the advertisement is embedded in. This allows a company
to purchase advertising space on multiple common websites and then determine
which site visitors have visited which website by tracking the cookies that it sets
in the advertisements. Now that’s sneaky!

Most modern browsers allow you to block third-party cookies separate from
 session or persistent cookies, allowing you to use cookies for normal operations
but block third-party cookies trying to track your website history.

The anatomy of a cookie
The HTTP standard defines how web servers set and retrieve cookies within the
HTTP session with a client browser. When a client browser requests to view a web
page on a server, it sends an HTTP GET request:

GET /index.php

Host: www.myserver.com

The request specifies the web page to retrieve and the host from where to retrieve
it (usually the same server the request is sent to). The host server returns an HTTP
response, which includes the status code for the request, along with any cookies
that it wants to set using the Set-Cookie statement and then the HTML for the
requested web page:

HTTP/1.0 GET OK

Content-type: text/html

Set-Cookie: name1=value1; attributes

Set-Cookie: name2=value2; attributes

 Web page HTML content

The cookie information appears before the HTML from the requested web
page. The server assigns each cookie a unique name and a value, and possibly
adds optional attributes that define the cookie type. The client browser stores each
cookie as a separate temporary file on the client workstation.

The Set-Cookie statement can list one or more optional attributes for the cookie.
Table 6-2 lists the cookie attributes that you can set.

Se
ss

io
ns

 a
nd

 C
ar

ts

CHAPTER 6 Sessions and Carts 423

If either the Expires or Max-Age attributes are set, the cookie is a persistent
cookie. It will remain available until the expiration date and/or time. If no attri-
butes are specified, the cookie is a session cookie and will be deleted when the
client browser window closes.

The Expires attribute specifies an exact date and time the cookie will expire:

Set-Cookie: id=25; Expires=Mon 12 May 2025 13:30:00 GMT;

The Max-Age attribute sets a time duration (in seconds) that the cookie should
remain valid:

Set-Cookie: id=25; Max-Age=3600

After the server sets a cookie, the next time the client browser requests a web page
from the same destination, it sends all the cookies set from that destination in the
HTTP request using a single Cookie statement:

GET /index.php

Host: www.myserver.com

Cookie: name1=value1; name2=value2

The Cookie statement just sends the name/value pair for all the cookies set
by that server. It doesn’t send any attributes that the server had set for the
cookies. The server can then extract the separate cookie names and values and pass
them to any server-side programming language (such as your PHP programs).

TABLE 6-2	 HTTP Cookie Attributes
Attribute Description

Domain=site Specifies the domain the cookie applies to. If omitted the server is the default
location.

Expires=datetime Specifies the expiration date for the cookie as an HTTP timestamp value.

HttpOnly Specifies that the cookie can only be retrieved in an HTTP session.

Max-Age=number Specifies the expiration time for the cookie in seconds.

Path=path Indicates the path in the URL that must exist in the requested resource.

SameSite=setting Specifies if the cookie can only be accessed from the same site that set it. Values
are Strict or Lax.

Secure Specifies that the cookie can only be sent in an HTTPS secure session.

424 BOOK 4 PHP

Cookie rules
Overall, the implementation of cookies in browsers is somewhat nonstandard. No
two client browsers may handle cookies the same way. There are however a few
minimum requirements that the HTTP standard specifies:

 » The browser must support cookies up to 4,096 bytes in size.

 » The browser must support at least 50 cookies per website.

 » The browser must be able to store at least 3,000 cookies total.

Most browsers exceed these requirements, but it’s best not to test the limits in
your applications. If you need to store large amounts of data for an application,
it’s best to use some other type of persistent data storage, such as a database. You
can store a key identifying the site visitor as a cookie, and then use that key to
reference the larger amounts of data stored in the database associated with that
site visitor.

Be careful when using session cookies. There is still some controversy in the
browser world over how to handle session cookies, especially now that tabbed
browsers have become all the rage. Most browsers consider all the web page tabs
within the same browser window as a single session. To close the session, your
site visitor must close the entire browser window, not just the tab for the web
page. Also, many browsers now have a feature that allows for the option of saving
sessions by storing session cookie data rather than removing it when the browser
window closes. This somewhat circumvents the whole idea of session cookies!

PHP and Cookies
PHP allows you to fully interact with cookies in your web applications. You can
set cookies from one web page, retrieve and read them in another web page, and
remove them from yet another web page. This section walks through the code you
need to use to implement cookies in your PHP applications.

Setting cookies
PHP uses the setcookie() function to set new cookies and update existing cook-
ies. Here’s the basic format of the setcookie() function:

setcookie(name [, value] [, expire] [, path] [, domain] [, secure] [, httponly])

	Title Page

	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part
1 Getting Started with Web Programming
	Chapter 1 Examining the Pieces of Web Programming
	Creating a Simple Web Page
	Kicking things off with the World Wide Web
	Making sense of markup languages
	Retrieving HTML documents
	Styling

	Creating a Dynamic Web Page
	Client-side programming
	Server-side programming
	Combining client-side and server-side programming

	Storing Content

	Chapter 2 Using a Web Server
	Recognizing What’s Required
	The web server
	The PHP server
	The database server

	Considering Your Server Options
	Using a web-hosting company
	Building your own server environment
	Using premade servers

	Tweaking the Servers
	Customizing the Apache Server
	Customizing the MySQL server
	Customizing the PHP server

	Chapter 3 Building a Development Environment
	Knowing Which Tools to Avoid
	Graphical desktop tools
	Web-hosting sites
	Word processors

	Working with the Right Tools
	Text editors
	Program editors
	Integrated development environments
	Browser debuggers

	Part
2 HTML5 and CSS3
	Chapter 1 The Basics of HTML5
	Diving into Document Structure
	Elements, tags, and attributes
	Document type
	Page definition
	Page sections

	Looking at the Basic HTML5 Elements
	Headings
	Text groupings
	Breaks

	Marking Your Text
	Formatting text
	Using hypertext

	Working with Characters
	Character sets
	Special characters

	Making a List (And Checking It Twice)
	Unordered lists
	Ordered lists
	Description lists

	Building Tables
	Defining a table
	Defining the table’s rows and columns
	Defining the table headings

	Chapter 2 The Basics of CSS3
	Understanding Styles
	Defining the rules of CSS3
	Applying style rules
	Cascading style rules

	Styling Text
	Setting the font
	Playing with color

	Working with the Box Model
	Styling Tables
	Table borders
	Table data

	Positioning Elements
	Putting elements in a specific place
	Floating elements

	Chapter 3 HTML5 Forms
	Understanding HTML5 Forms
	Defining a form
	Working with form fields

	Using Input Fields
	Text boxes
	Password entry
	Check boxes
	Radio buttons
	Hidden fields
	File upload
	Buttons

	Adding a Text Area
	Using Drop-Down Lists
	Enhancing HTML5 Forms
	Data lists
	Additional input fields

	Using HTML5 Data Validation
	Holding your place
	Making certain data required
	Validating data types

	Chapter 4 Advanced CSS3
	Rounding Your Corners
	Using Border Images
	Looking at the CSS3 Colors
	Playing with Color Gradients
	Linear gradients
	Radial gradients

	Adding Shadows
	Text shadows
	Box shadows

	Creating Fonts
	Focusing on font files
	Working with web fonts

	Handling Media Queries
	Using the @media command
	Dealing with CSS3 media queries
	Applying multiple style sheets

	Chapter 5 HTML5 and Multimedia
	Working with Images
	Placing images
	Styling images
	Linking images
	Working with image maps
	Using HTML5 image additions

	Playing Audio
	Embedded audio
	Digital audio formats
	Audio the HTML5 way

	Watching Videos
	Paying attention to video quality
	Looking at digital video formats
	Putting videos in your web page

	Getting Help from Streamers

	Part
3 JavaScript
	Chapter 1 Introducing JavaScript
	Knowing Why You Should Use JavaScript
	Changing web page content
	Changing web page styles

	Seeing Where to Put Your JavaScript Code
	Embedding JavaScript
	Using external JavaScript files

	The Basics of JavaScript
	Working with data
	Data types
	Arrays of data
	Operators

	Controlling Program Flow
	Conditional statements
	Loops

	Working with Functions
	Creating a function
	Using a function

	Chapter 2 Advanced JavaScript Coding
	Understanding the Document Object Model
	The Document Object Model tree
	JavaScript and the Document Object Model

	Finding Your Elements
	Getting to the point
	Walking the tree

	Working with Document Object Model Form Data
	Text boxes
	Text areas
	Check boxes
	Radio buttons

	Chapter 3 Using jQuery
	Loading the jQuery Library
	Option 1: Downloading the library file to your server
	Option 2: Using a content delivery network

	Using jQuery Functions
	Finding Elements
	Replacing Data
	Working with text
	Working with HTML
	Working with attributes
	Working with form values

	Changing Styles
	Playing with properties
	Using CSS objects
	Using CSS classes

	Changing the Document Object Model
	Adding a node
	Removing a node

	Playing with Animation

	Chapter 4 Reacting to Events with JavaScript and jQuery
	Understanding Events
	Event-driven programming
	Watching the mouse
	Listening for keystrokes
	Paying attention to the page itself

	Focusing on JavaScript and Events
	Saying hello and goodbye
	Listening for mouse events
	Listening for keystrokes
	Event listeners

	Looking at jQuery and Events
	jQuery event functions
	The jQuery event handler

	Chapter 5 Troubleshooting JavaScript Programs
	Identifying Errors
	Working with Browser Developer Tools
	The DOM Explorer
	The Console
	The Debugger

	Working Around Errors

	Part
4 PHP
	Chapter 1 Understanding PHP Basics
	Seeing the Benefits of PHP
	A centralized programming language
	Centralized data management

	Understanding How to Use PHP
	Embedding PHP code
	Identifying PHP pages
	Displaying output
	Handling new-line characters

	Working with PHP Variables
	Declaring variables
	Seeing which data types PHP supports
	Grouping data values with array variables

	Using PHP Operators
	Arithmetic operators
	Arithmetic shortcuts
	Boolean operators
	String operators

	Including Files
	The include() function
	The require() function

	Chapter 2 PHP Flow Control
	Using Logic Control
	The if statement
	The else statement
	The elseif statement
	The switch statement

	Looping
	The while family
	The for statement
	The foreach statement

	Building Your Own Functions
	Working with Event-Driven PHP
	Working with links
	Processing form data

	Chapter 3 PHP Libraries
	How PHP Uses Libraries
	Exploring PHP extensions
	Examining the PHP extensions
	Including extensions
	Adding additional extensions

	Text Functions
	Altering string values
	Splitting strings
	Testing string values
	Searching strings

	Math Functions
	Number theory
	Calculating logs and exponents
	Working the angles
	Hyperbolic functions
	Tracking statistics

	Date and Time Functions
	Generating dates
	Using timestamps
	Calculating dates

	Image-Handling Functions

	Chapter 4 Considering PHP Security
	Exploring PHP Vulnerabilities
	Cross-site scripting
	Data spoofing
	Invalid data
	Unauthorized file access

	PHP Vulnerability Solutions
	Sanitizing data
	Validating data

	Chapter 5 Object-Oriented PHP Programming
	Understanding the Basics of Object-Oriented Programming
	Defining a class
	Creating an object instance

	Using Magic Class Methods
	Defining mutator magic methods
	Defining accessor magic methods
	The constructor
	The destructor
	Copying objects
	Displaying objects

	Loading Classes
	Extending Classes

	Chapter 6 Sessions and Carts
	Storing Persistent Data
	The purpose of HTTP cookies
	Types of cookies
	The anatomy of a cookie
	Cookie rules

	PHP and Cookies
	Setting cookies
	Reading cookies
	Modifying and deleting cookies

	PHP and Sessions
	Starting a session
	Storing and retrieving session data
	Removing session data

	Shopping Carts
	Creating a cart
	Placing items in the cart
	Retrieving items from a cart
	Removing items from a cart
	Putting it all together

	Part
5 MySQL
	Chapter 1 Introducing MySQL
	Seeing the Purpose of a Database
	How databases work
	Relational databases
	Database data types
	Data constraints
	Structured Query Language

	Presenting MySQL
	MySQL features
	Storage engines
	Data permissions

	Advanced MySQL Features
	Handling transactions
	Making sure your database is ACID compliant
	Examining the views
	Working with stored procedures
	Pulling triggers
	Working with blobs

	Chapter 2 Administering MySQL
	MySQL Administration Tools
	Working from the command line
	Using MySQL Workbench
	Using the phpMyAdmin tool

	Managing User Accounts
	Creating a user account
	Managing user privileges

	Chapter 3 Designing and Building a Database
	Managing Your Data
	The first normal form
	The second normal form
	The third normal form

	Creating Databases
	Using the MySQL command line
	Using MySQL Workbench
	Using phpMyAdmin

	Building Tables
	Working with tables using the command-line interface
	Working with tables using Workbench
	Working with tables in phpMyAdmin

	Chapter 4 Using the Database
	Working with Data
	The MySQL command-line interface
	The MySQL Workbench tool
	The phpMyAdmin tool

	Searching for Data
	The basic SELECT format
	More advanced queries

	Playing It Safe with Data
	Performing data backups
	Restoring your data

	Chapter 5 Communicating with the Database from PHP Scripts
	Database Support in PHP
	Using the mysqli Library
	Connecting to the database
	Closing the connection
	Submitting queries
	Retrieving data
	Being prepared
	Checking for errors
	Miscellaneous functions

	Putting It All Together

	Part
6 Creating Object-Oriented Programs
	Chapter 1 Designing an Object-Oriented Application
	Determining Application Requirements
	Creating the Application Database
	Designing the database
	Creating the database

	Designing the Application Objects
	Designing objects
	Coding the objects in PHP

	Designing the Application Layout
	Designing web page layout
	The AuctionHelper page layout

	Coding the Website Layout
	Creating the web page template
	Creating the support files

	Chapter 2 Implementing an Object-Oriented Application
	Working with Events
	Bidder Object Events
	Listing bidders
	Adding a new bidder
	Searching for a bidder

	Item Object Events
	Listing items
	Adding a new item
	Searching for an item

	Logging Out of a Web Application
	Testing Web Applications

	Chapter 3 Using AJAX
	Getting to Know AJAX
	Communicating Using JavaScript
	Considering XMLHttpRequest class methods
	Focusing on XMLHttpRequest class properties
	Trying out AJAX

	Using the jQuery AJAX Library
	The jQuery $.ajax() function
	The jQuery $.get() function

	Transferring Data in AJAX
	Looking at the XML standard
	Using XML in PHP
	Using XML in JavaScript

	Modifying the AuctionHelper Application

	Chapter 4 Extending WordPress
	Getting Acquainted with WordPress
	What WordPress can do for you
	How to run WordPress
	Parts of a WordPress website

	Installing WordPress
	Downloading the WordPress software
	Creating the database objects
	Configuring WordPress

	Examining the Dashboard
	Using WordPress
	Exploring the World of Plugins
	WordPress APIs
	Working with plugins and widgets

	Creating Your Own Widget
	Coding the widget
	Activating the widget plugin
	Adding the widget

	Part
7 Using PHP Frameworks
	Chapter 1 The MVC Method
	Getting Acquainted with MVC
	Exploring the MVC method
	Digging into the MVC components
	Communicating in MVC

	Comparing MVC to Other Web Models
	The MVP method
	The MVVM method

	Seeing How MVC Fits into N-Tier Theory
	Implementing MVC

	Chapter 2 Selecting a Framework
	Getting to Know PHP Frameworks
	Convention over configuration
	Scaffolding
	Routing
	Helper methods
	Form validation
	Support for mobile devices
	Templates
	Unit testing

	Knowing Why You Should Use a Framework
	Focusing on Popular PHP Frameworks
	CakePHP
	CodeIgniter
	Laravel
	Symfony
	Zend Framework

	Looking At Micro Frameworks
	Lumen
	Slim
	Yii

	Chapter 3 Creating an Application Using Frameworks
	Building the Template
	Initializing the application
	Exploring the files and folders
	Defining the database environment

	Creating an Application Scaffold
	Installing the scaffolding
	Exploring the scaffolding code

	Modifying the Application Scaffold
	Adding a new feature link
	Creating the controller code
	Modifying the model code
	Painting a view

	Index
	EULA

