
Se
ss

io
ns

 a
nd

 C
ar

ts

CHAPTER 6 Sessions and Carts 425

The only required parameter is the name of the cookie, although you’ll almost
always want to include a cookie value, too. Leaving off the value sets the cookie
value to NULL.

The optional expire parameter allows you to specify the expiration date and time
as a Unix timestamp value, making it a persistent cookie. The Unix timestamp
format is an integer value of the number of seconds since midnight on January 1,
1970. The last four parameters allow you to specify the URL paths and domains
allowed to access the cookie, and whether the cookie should be set as Secure or
HttpOnly.

Be careful with the expire parameter. Even though the HTTP message sends the
expire attribute as a full date and time, with the setcookie() function you set it
using a timestamp value, not a standard date and time. The way most PHP devel-
opers do that is by adding the number of seconds to the current date and time
retrieved from the time() function:

setcookie("test", "Testing", time() + (60*60*24*10));

This sets the cookie named test to expire ten days from the time the web page is
accessed by the site visitor.

Because the cookie is part of the HTTP message and not part of the HTML data,
you must set the cookie before you send any HTML content, including the opening
<!DOCTYPE> tag. There is an exception to this, though. If the PHP output_buffer
setting is enabled, the PHP server sends all output from the program to a buffer
first. Then, either when the buffer is full or the program ends, it rearranges the
data in the buffer to place the HTTP messages first and then sends the data to the
client browser.

Follow these steps to test setting a persistent cookie from a PHP application:

1.	 Open your favorite text editor, program editor, or integrated develop-
ment environment (IDE) package.

2.	 Type the following code into the editor window:

<?php

setcookie("test1", "This is a test cookie", time() + 600);
?>

<!DOCTYPE html>

<html>

<head>

<title>PHP Cookie Test</title>

</head>

426 BOOK 4 PHP

<body>

<h1>Trying to set a cookie</h1>

</body>

</html>

3.	 Save the file as cookietest1.php in the DocumentRoot folder for the web
server.

For XAMPP in Windows, that’s c:\xampp\htdocs; for XAMPP in macOS,
that’s /Applications/XAMPP/htdocs.

4.	 Start the XAMPP Control Panel and then start the Apache web server.

5.	 Open your browser and enter the following URL:

http://localhost:8080/cookietest1.php

You may need to change the TCP port number to match your web server.

6.	 Using your browser’s Developer Tools, check the cookies that are set
from the web page and their expiration date and time.

You should see the test1 cookie created. It should be set to expire in ten
minutes.

7.	 Close the browser window when you’re done.

The Developer Tools allow you to see the test1 cookie that was set by the program.
For the Microsoft Edge browser, look in the Debugger section for the cookies, as
shown in Figure 6-1.

The cookie is set, along with the value, and the expiration time is set to ten
minutes (600 seconds) in the future.

You have to place the setcookie() function lines before the <html> section of the
web page. Otherwise, you’ll get an error message. The web server must send any
cookie data in the HTTP session before any HTML content.

Reading cookies
PHP makes reading cookies that your application sets a breeze. The PHP server
automatically places all cookies passed from the client in the $_COOKIE[] special
array variable. The cookie name that you assigned in the setcookie() statement
becomes the associative array key:

$_COOKIE['name']

Se
ss

io
ns

 a
nd

 C
ar

ts

CHAPTER 6 Sessions and Carts 427

If a cookie has expired, you’ll get an error message when trying to access it using
the $_COOKIE[] array variable. It’s a good idea to always check that the cookie
exists first, using the isset() function:

if (isset($_COOKIE['test'])) {

 $data = $_COOKIE['test'];

} else {

 $data = 0;

}

This code will set the value of the $data variable used in the program to 0 if the
cookie doesn’t exist. You can then check for the 0 condition in the variable to
determine if the cookie is missing.

Follow these steps to test reading the cookie you set in the cookietest1.php
program:

1.	 Open your editor, and type the following code:

<!DOCTYPE html>

<html>

<head>

FIGURE 6-1:
Displaying the

cookie in the
Microsoft Edge

Developer Tools
window.

428 BOOK 4 PHP

<title>PHP Cookie Test</title>

</head>

<body>

<h1>Retrieving the test cookie</h1>

<?php

if (isset($_COOKIE['test1'])) {

 $data = $_COOKIE['test1'];

 echo "<p>The cookie was set: $data</p>

\n";

} else {

 echo "<p>Sorry, I couldn't find the cookie</p>

\n";

}

?>

</body>

</html>

2.	 Save the file as cookietest2.php in the DocumentRoot folder for your web
server.

3.	 Ensure the web server is running, and then open your browser and enter
the following URL:

http://localhost:8080/cookietest2.php

4.	 Close the browser when you’re done testing.

If you run the cookietest2.php program within ten minutes of the cookietest1.
php program, you should see the data stored in the cookie appear on the web page
and in the browser Developer Tools, as shown in Figure 6-2.

If you wait longer than the ten-minute expiration time of the cookie, you’ll get the
message that the program couldn’t find the cookie.

Modifying and deleting cookies
You can easily modify an existing cookie just by resending the cookie with the
updated value:

setcookie("test1", "New data", time() + 600);

When you resend the cookie, the browser overwrites the original cookie infor-
mation with the new information, including the updated expiration time. If you
specify a time relative to the current time, that will change the expiration time of
the cookie.

Se
ss

io
ns

 a
nd

 C
ar

ts

CHAPTER 6 Sessions and Carts 429

To delete a cookie, just set the expiration time to a time value in the past:

setcookie("test1", "", time() – 1);

When you set the expiration time to one second earlier than the current time, the
browser will immediately expire the cookie.

Follow these steps to test setting and removing a cookie:

1.	 Open your editor and type the following code:

<?php

if (!isset($_COOKIE['test1'])) {

 setcookie("test1", "This is a test cookie", time() + 600);
} else {

 setcookie("test1", "", time() - 1);

}

?>

<!DOCTYPE html>

<html>

<head>

<title>Deleting a Cookie</title>

FIGURE 6-2:
The result of the
cookietest2.

php code
displaying the

cookie data.

430 BOOK 4 PHP

</head>

<body>

<h1>Cookie status:</h1>

<?php

 if (isset($_COOKIE['test1'])) {

 $data = $_COOKIE['test1'];

 echo "<p>Cookie set: $data<p>\n";

 } else {

 echo "<p>Cookie not set</p>\n";

 }

?>

Click to try again

</body>

</html>

2.	 Save the file as cookietest3.php in the DocumentRoot folder for your web
server.

3.	 Open your browser and enter the following URL:

http://localhost:8080/cookietest3.php

4.	 Note if the cookie has been set or not, then click the Click to Try Again
link in the web page to reload the page.

You can continue clicking the link to toggle the cookie on and off.

5.	 Close the browser window when you’re done testing.

In the cookietest3.php code, each time you visit the page the PHP code checks if
the cookie exists. If the cookie exists, the code deletes it by setting the expiration
time back one second. If the cookie doesn’t exist, it creates the cookie. You can
continue going back and forth by clicking the link to reload the page each time.

PHP and Sessions
PHP handles sessions and session cookies a little differently from persistent
cookies. Instead of storing session cookies in the client browser as separate data
files, PHP assigns a unique session ID to each site visitor session and stores that
as a session cookie in the client browser.

PHP then stores any data associated with the session in a temporary file located on
the actual PHP server. This helps protect the session data, because it’s not being

Se
ss

io
ns

 a
nd

 C
ar

ts

CHAPTER 6 Sessions and Carts 431

stored in the client browser at any time. When the session ends, PHP automati-
cally deletes the temporary session file on the server.

This feature alone makes using sessions to store data more attractive than using
persistent cookies. The only data sent between the client browser and the server is
the session ID value assigned to the session. All the data stays local on the server.

The following sections describe how to use sessions in your PHP applications.

Starting a session
Before you can set or read any session data, you must start the session. PHP
provides an easy way for you to declare sessions in your web pages. The PHP
session_start() function automatically sends the required HTTP code to the
remote client browser to create a session cookie. PHP assigns the session cookie a
unique ID value to identify the session.

In the PHP file (the code for your web page), the session_start() function must
come before any HTML code, including the <!DOCTYPE> tag. The session PHP code
then looks like this:

<?php

session_start();

?>

<!DOCTYPE html>

<html>

You must add the session_start() function at the start of every web page that
needs to access the session data. If the session_start() function is not present,
PHP doesn’t look for the session ID, and your application can’t access any of the
session data.

Don’t place any HTML comment lines, blank lines, or even a space before the
opening <?php tag when using the session_start() function. Any text that
appears before the opening <?php tag will be sent as HTML code to the client
browser. Then you’ll get an error message for trying to send the session data.

Storing and retrieving session data
After you initialize the session using the session_start() function, you can use
the $_SESSION[] array variable to both set and retrieve session data in your appli-
cation. To set a new value, just define it in an assignment statement:

$_SESSION['item'] = "computer";

432 BOOK 4 PHP

Use the session cookie name as the associative array key. When you set a session
cookie name/value pair, you can access it at any time in any web page that’s part
of the same session:

echo "You purchased a " . $_SESSION['item'];

Follow these steps to test out setting and reading session cookie data:

1.	 Open your editor and type the following code:

<?php

session_start();

?>

<!DOCTYPE html>

<html>

<head>

<title>Testing Session Cookies</title>

</head>

<body>

<h1>Setting a session cookie</h1>

<?php

 $_SESSION['test2'] = "Second test cookie";

?>

Click to continue

</body>

</html>

2.	 Save the file as sessiontest1.php in the DocumentRoot folder for your
web server.

3.	 Open a new tab or window in your editor and type the following code:

<?php

session_start();

?>

<!DOCTYPE html>

<html>

<head>

<title>Testing Session Cookies</title>

</head>

<body>

<h1>Retrieving the session cookie</h1>

<?php

Se
ss

io
ns

 a
nd

 C
ar

ts

CHAPTER 6 Sessions and Carts 433

 if (isset($_SESSION['test2'])) {

 $data = $_SESSION['test2'];

 echo "<p>Session cookie: $data</p>\n";

 } else {

 echo "<p>Error accessing the session

 cookie</p>\n";

 }

?>

Go back to start

</body>

</html>

4.	 Save the file as sessiontest2.php in the DocumentRoot folder for your
web server.

5.	 Ensure that the web server is started, and then open your browser and
enter the following URL:

http://localhost:8080/sessiontest1.php

6.	 Click the Click to Continue link to go to the second test page.

7.	 Close your browser window.

8.	 Open your browser window, and go directly to the following URL:

http://localhost:8080/sessiontest2.php

9.	 Close the browser at the end of the test.

When you open the sessiontest1.php web page, the PHP code starts a session
and then saves the test session cookie and value. If you use the Developer Tools
in your browser, you can see that the web page doesn’t create a test2 cookie,
but instead creates a cookie named PHPSESSID with a long hexadecimal value, as
shown in Figure 6-3.

This is the unique session ID that the PHP server assigned to the browser session.

When you click the link, the browser requests the sessiontest2.php web page
from the server, passing the session ID cookie that was set in the sessiontest1.
php web page code. This tells PHP that the second page is part of the same brows-
ing session and allows the PHP code access to any session cookie data set in that
session. Figure 6-4 shows the output that you should see from the sessiontest2.
php file, along with the PHPSESSID cookie value shown in the Developer Tools.

434 BOOK 4 PHP

FIGURE 6-3:
Looking for the

PHP session
cookie using the
Developer Tools.

FIGURE 6-4:
The output

from the
sessiontest2.

php file.

Se
ss

io
ns

 a
nd

 C
ar

ts

CHAPTER 6 Sessions and Carts 435

When you close the browser window, that deletes the session ID session
cookie. When you reopen the browser window and attempt to go directly to the
sessiontest2.php file, the original session ID is not present, so PHP creates a
new session for the connection. That new session doesn’t have access to the data
set in the original session, so you’ll get an error message, as shown in Figure 6-5.

If you take a look at the PHPSESSID value using the Developer Tools, it has a dif-
ferent value than before, because the new browser window is a new session.

Removing session data
There are three ways to remove session cookie data:

»» Remove individual session values.

»» Remove all session values but keep the session active.

»» Remove the original session ID session cookie, which deletes the session.

FIGURE 6-5:
The error
message

generated from
trying to access

data in an
expired session.

436 BOOK 4 PHP

To remove individual session values, use the unset() function, along with the
session array variable to remove:

unset($_SESSION['item']);

This removes the session name/value pair from the session data in the temp file
on the server, but maintains the temp file and the session ID session cookie in the
client browser.

To remove all the session name/value pairs from the session data, but maintain
the session ID session cookie, use the session_unset() function:

session_unset();

You can terminate an entire session by using the session_destroy() function
anywhere in your PHP application:

session_destroy();

This removes all session name/value pairs associated with the session, as well
as the session ID value assigned to the client browser’s session cookie. If the site
visitor continues on to another web page in the application, the session_start()
function will set a new session ID session cookie, along with a new temporary
session file on the server associated with the session.

Shopping Carts
Quite possibly one of the most common uses of session cookies is the ability to
track items customers intend to purchase while browsing through an online store.
Just like old-fashioned shopping carts, the online shopping cart should allow cus-
tomers to place one or more of an item into the cart, view the cart contents at any
time, and remove any item from the cart — all with the benefit of not having to
listen to a squeaky cart wheel!

This section shows you how to use session cookies to implement simple shopping
carts in your own dynamic web applications.

Creating a cart
To create an online shopping cart, you just need to use two PHP features: session
cookies and arrays. The idea is to create a session cookie as an empty array variable.

Se
ss

io
ns

 a
nd

 C
ar

ts

CHAPTER 6 Sessions and Carts 437

As shoppers place new items into the cart, the code adds a new element to the
array, setting the quantity of the item selected as the array value.

You do that by creating a multidimensional array session cookie. That sounds like
a mouthful, but it’s actually very easy to create:

$_SESSION['cart'] = array();

This single line of code creates a session cookie named cart and defines it as an
array variable. That’s the start to your shopping cart.

Placing items in the cart
When you create the shopping cart session cookie, you’re ready to start placing
items into it. To place an item into the cart, you’ll create a new array element and
pair it with a value. The array element key will be the name of the product placed
in the cart, and the array element value will be the quantity of the product to pur-
chase. That looks like this:

$_SESSION['cart']['apples'] = 10;

This statement creates an array element in the $_SESSION['cart'] session cookie
with the name apples and assigns it a value of 10.

You can create as many array elements as you want to add into the session cookie
array variable.

Retrieving items from a cart
Now that you have a multidimensional session cookie array that contains the
products you placed in the cart, all you need to do is extract the values stored in
the array to see what’s there. However, that can be a little tricky.

Because the array is an associative array, you can’t just loop through the array
element using a simple for or while statement because you don’t know what
key names are in the array. This is where the foreach statement comes in handy!
It allows you to iterate through all the array keys without having to know what
they are:

foreach($_SESSION['cart'] as $key => $value) {

 echo "<p>$key - $value</p>\n";

}

438 BOOK 4 PHP

The foreach statement iterates through the array, extracting each key and value
pair in each iteration. You can then use the individual key and value pairs in your
code to list the items and their quantities.

Removing items from a cart
Because each product in the cart is a separate array element of the session cookie,
you can handle each product individually, as long as you know the product name
that you used for the array key. To remove an individual product, just specify it in
the unset() function:

unset($_SESSION['cart']['apples']);

This statement removes just the apples array key and its value from the array,
leaving any other items still in the array. If you want to remove the entire
shopping cart, you’d use the following:

session_unset($_SESSION['cart']);

This statement removes the entire cart session cookie. To start a new cart, your
code would need to create a new cart session cookie and make it an array variable.

Be careful when unsetting the individual shopping cart items or the entire session
cookie, because there’s no going back. When you remove a session cookie, it’s
gone and can’t be recovered!

Putting it all together
As you can tell, working with a shopping cart is a multistep process, and it can get
somewhat complicated. Let’s take a look at an example of using a shopping cart
on a web page. Listing 6-1 shows the code.

LISTING 6-1:	 The carttest.php Program

<?php

session_start();

?>

<!DOCTYPE html>

<html>

<head>

<title>Shopping Cart Test</title>

</head>

<body>

Se
ss

io
ns

 a
nd

 C
ar

ts

CHAPTER 6 Sessions and Carts 439

<h1>Items available</h1>

<form action="carttest.php" method="post">

<table>

<tr><th>Item</th><th>Quantity</th></tr>

<tr><td>Apples</td><td><input type="text" name="apples" size="2"></td></tr>

<tr><td>Bananas</td><td><input type="text" name="bananas" size="2"></td></tr>

</table>

<input type="submit" value="Click to add to cart">

</form>

<?php

 if (isset($_POST['apples'])) {

 if (is_numeric($_POST['apples'])) {

 $_SESSION['cart']['apples'] = $_POST['apples'];

 } elseif ($_POST['apples'] == "Remove") {

 unset($_SESSION['cart']['apples']);

 }

 }

 if (isset($_POST['bananas'])) {

 if (is_numeric($_POST['bananas'])) {

 $_SESSION['cart']['bananas'] = $_POST['bananas'];

 } elseif ($_POST['bananas'] == "Remove") {

 unset($_SESSION['cart']['bananas']);

 }

 }

?>

<fieldset style="width:300px">

<legend>Your Shopping Cart</legend>

<?php

 if (!isset($_SESSION['cart'])) {

 $_SESSION['cart'] = array();

 echo "Your shopping cart is empty\n";

 } else {

 echo "<form action=\"carttest.php\" method=\"post\">\n";

 echo "<table>\n";

 echo "<tr><th>Item</th><th>Quantity</th><th/></tr>\n";

 foreach($_SESSION['cart'] as $key => $value) {

 echo "<tr><td>$key</td><td>$value</td>\n";

 echo "<td><input type=\"submit\" name=\"$key\" value=\"Remove\"></

td></tr>\n";

 }

 echo "</table>\n";

 echo "</form>\n";

 }

?>

</fieldset>

</body>

</html>

440 BOOK 4 PHP

Listing 6-1 shows the carttest.php program, which I’ll walk through to demon-
strate using a shopping cart. The first part of the program creates a simple form
for selecting the products to purchase. The code lists two products — apples and
bananas — and provides a text box to indicate the quantity of each you want to
place in the shopping cart.

The next section uses PHP code to check whether the form has already been sub-
mitted. If the site visitor has submitted the form, the PHP code checks to see
which (if any) of the products had been selected for purchase. If either one had
been selected, the PHP code stores the new quantity number in the cart session
cookie for that product:

if (isset($_POST['apples'])) {

 if (is_numeric($_POST['apples'])) {

 $_SESSION['cart']['apples'] = $_POST['apples'];

Next, the code shows the shopping cart status. If there isn’t a shopping cart
session cookie, one is created:

$_SESSION['cart'] = array();

If a shopping cart session cookie exists, the program creates a form containing the
shopping cart items, along with a Remove button. The foreach statement is used
to iterate through each of the items in the shopping cart:

foreach($_SESSION['cart'] as $key => $value) {

 echo "<tr><td>$key</td><td>$value</td>\n";

 ech�o "<td><input type=\"submit\" name=\"$key\"

value=\"Remove\"></td></tr>\n";

}

Because there are two forms on the web page, you need to add some more code to
check if a Remove button has been clicked by the shopper. That was added to the
code that checks for the other form data:

} elseif ($_POST['apples'] == "Remove") {

 unset($_SESSION['cart']['apples']);

}

Follow these steps to test the carttest.php program:

1.	 Open your editor and enter the code from Listing 6-1.

2.	 Save the file as carttest.php in the DocumentRoot folder for your web server.

It’s important that you use this exact filename because the forms use that as
the action attribute.

Se
ss

io
ns

 a
nd

 C
ar

ts

CHAPTER 6 Sessions and Carts 441

3.	 Ensure that the Apache web server is running, and then open your
browser and enter the following URL:

http://localhost:8080/carttest.php

4.	 Enter a quantity to purchase for one of the items, and then click the Click
to Add to Cart button.

5.	 Enter a quantity to purchase for the other item, and then click the Click
to Add to Cart button.

6.	 Click the Remove button for one of the items.

7.	 Repeat the process to add or remove products in the shopping cart.

8.	 Close your browser and close the Apache web server when you’re done.

When you first open the carttest.php file, the shopping cart should show that
it’s empty, as shown in Figure 6-6.

FIGURE 6-6:
The initial

shopping cart
web page.

442 BOOK 4 PHP

When you enter a quantity for a product and then click the button to submit it, the
product and quantity appear in the shopping cart, as shown in Figure 6-7.

Click the Remove button to remove a product from the shopping cart, or add
more quantity of a product to change the value shown in the shopping cart.
Congratulations! You’ve just created a simple shopping cart!

FIGURE 6-7:
The shopping cart

after selecting
products.

5MySQL

Contents at a Glance
CHAPTER 1:	 Introducing MySQL. . 445

Seeing the Purpose of a Database. . 445
Presenting MySQL. . 454
Advanced MySQL Features . . 458

CHAPTER 2:	 Administering MySQL. . 465
MySQL Administration Tools. . 465
Managing User Accounts. . 477

CHAPTER 3:	 Designing and Building a Database. 489
Managing Your Data. . 489
Creating Databases. . 492
Building Tables. . 500

CHAPTER 4:	 Using the Database . . 513
Working with Data. . 513
Searching for Data. . 524
Playing It Safe with Data. . 531

CHAPTER 5:	 Communicating with the Database from
PHP Scripts. . 541
Database Support in PHP. . 541
Using the mysqli Library. . 543
Putting It All Together. . 554

CHAPTER 1 Introducing MySQL 445

Introducing MySQL

Computers are all about storing information. However, unlike that junk
drawer in your kitchen that contains multiple shards of paper with names
and phone numbers scribbled on them, you want to store your dynamic web

application data in an orderly fashion. After all, you wouldn’t want to mix up the
data from your astrophysics experiments with your bowling league scores!

The MySQL database server provides a user-friendly platform for you to organize
your application data, making it simple to identify which data belongs to which
application and easy for the application to access the data, all while maintaining
security so the right people can only get to the right data. This chapter describes
just why you need a database for your dynamic web applications, and why you
should choose the MySQL database server.

Seeing the Purpose of a Database
With PHP, you have a few different options for storing persistent data in your
application to retrieve at a later time. One method is to use the PHP file system
functions to create a standard text file on the server to store the application data,
and then read the data back as necessary.

One downside to using standard text files to store your application data is that it’s
hard to find a specific data item buried in the text file. Standard text files are often

Chapter 1

IN THIS CHAPTER

»» Understanding why you need a
database

»» Seeing how MySQL works

»» Exploring the advanced features of
MySQL

446 BOOK 5 MySQL

called “flat files” because you can’t create any type of relationships in the data to
make searching for specific information easier. Your application must open the
text file and read each line until it finds the data it needs. That’s fine for small
amounts of data, but for large amounts of data that can be slow, especially if there
are thousands of site visitors all trying to access their data from the same file at
the same time.

To solve that problem, most web developers have turned to using databases. Data-
bases organize data in a manner making it easier for the database server to insert,
find, modify, and delete data. There are lots of different database types avail-
able, but one of the most popular is the relational database system. This sec-
tion describes how relational databases work with data to help speed up your web
application.

How databases work
Microsoft Access is by far the most popular end-user database tool developed
for commercial use. Many Windows users, from professional accounts to bowl-
ing league secretaries, use Access to track data. It provides an easy, intuitive user
interface, allowing novice computer users to quickly produce queries and reports
with little effort.

However, despite its user-friendliness, Access has its limitations. To fully under-
stand how MySQL differs from Access, you must first understand how database
systems are organized.

There is more to a database than just a bunch of data files. Most databases incor-
porate several layers of files, programs, and utilities, which all interact to provide
the database experience. The whole package is referred to as a database manage-
ment system (DBMS).

There are different types of DBMS packages, but they all basically contain the fol-
lowing parts:

»» A database engine

»» One or more database files

»» An internal data dictionary

»» A query language interface

The database engine is the heart and brains of the DBMS. It controls all access
to the data, which is stored in the database files. Any application (including the
DBMS itself) that requires access to data must go through the database engine
(see Figure 1-1).

In
tr

od
uc

in
g

M
yS

Q
L

CHAPTER 1 Introducing MySQL 447

The database engine uses an internal data dictionary to define how the database
operates, the type of data that can be stored in the database files, and the structure
of the database. It basically defines the rules used for the DBMS. Each DBMS has
its own data dictionary.

If you’re a user running a simple database on Access, you probably don’t even
realize you’re using a database engine. Access keeps much of the DBMS work
under the hood and away from users. When you start Access, the database engine
starts, and when you stop Access, the database engine stops.

In MySQL, the database engine runs as a service that is always running in the
background on the server. Users run separate application programs that interface
with the database engine while it’s running. Each application can send queries to
the database engine and process the results returned. When the application stops,
the MySQL database engine continues to run, waiting for commands from other
applications.

Both Access and MySQL require one or more database files to be present to hold
data. If you work with Access, you’ve seen the .mdb database files. These files
contain the data defined in tables created in the Access database. Each database
has its own .mdb file.

In the Access environment, if two or more applications want to share a database,
the database file must be located on a shared network drive available to all the
applications. Each application has a copy of the Access database engine program
running on the local workstation, which points to the common database file, as
shown in Figure 1-2.

FIGURE 1-1:
A simple

database
management

system.

448 BOOK 5 MySQL

Where this model falls apart is that there are multiple database engines, all trying
to access the database files across a network environment. This generates large
amounts of data on the network and slows down the performance of the individual
database engines.

In the MySQL model, the database engine and database files are always on the
same computer. Queries and reports run from separate applications, but they all
send requests to the common database engine, as shown in Figure 1-3.

As you can see from Figure 1-3, the MySQL database engine accepts data requests
from multiple users across the network. All the database access is performed
on the local system running the MySQL server, so the data interaction with the

FIGURE 1-2:
A shared

Microsoft Access
environment.

FIGURE 1-3:
A multiuser

MySQL
environment.

In
tr

od
uc

in
g

M
yS

Q
L

CHAPTER 1 Introducing MySQL 449

database files stays on the local system. The database engine only sends the query
or report results across the network to the applications.

This feature alone makes using MySQL a better database choice in multiuser data-
base projects.

Relational databases
Databases are all about arranging data to make finding information faster. Rela-
tional database theory arranges data in three levels: databases, tables, and data
fields.

Databases
A database groups related data into a single container. The database is the highest
level or grouping of data on the relational database server. The server allows you
to create multiple databases, all accessible from the same server service running
on the server.

To help keep things organized, it’s a good idea to create a separate database for
each application you’re hosting on the server. This helps to separate data ele-
ments and eliminates accidents caused by accessing the wrong data from the
wrong application.

Each database you create must have a unique name on the server. To help with
the organization process, it’s usually a good idea to somehow relate the database
name to the name of the application.

Table
The table is a subset of data within the database, which contains a grouping of
similar data items. For example, if a company wants to track data on employees,
customers, and products, instead of having just one group of mixed-up data ele-
ments, the company would create four separate tables to hold the data:

»» An Employees table to hold data related to employees

»» A Customers table to hold data related to customers

»» A Products table to hold data related to products

»» An Orders table to track which products are in individual customer orders

The process of grouping application data into tables is called data normalization.
Grouping similar data into its own table gives you more control over the data. For

450 BOOK 5 MySQL

example, if you have a program that interfaces only with customer orders, you can
give it permissions to only the Customers, Products, and Orders tables, leaving the
Employees table safe from accidental exposure.

Data fields
You use data fields to hold individual data elements within a table. For example,
the Employees table might contain data fields for an employee ID number, first
name, last name, home address, salary, and employment start date. The data
fields are the core of the application because they’re where the application actu-
ally stores data.

The table groups data fields into data records. Each data record is a single occur-
rence of values for each of the data fields. Figure 1-4 shows a diagram of how the
Employees table might look.

Figure 1-4 shows the data fields as table headings. Each data record appears as a
single line of data in the table (in this case, the information for a single employee).
Because data is often displayed this way in a table, you’ll often hear the word row
used to reference a single data record.

FIGURE 1-4:
An example of
an Employees

table layout.

In
tr

od
uc

in
g

M
yS

Q
L

CHAPTER 1 Introducing MySQL 451

Database data types
Just as with variables in programming languages, databases need to identify the
type of data stored in each data field so that it knows how much space to reserve
to store the data, and how to handle the data. Table 1-1 shows the basic data types
found in most relational database systems.

Many relational database servers provide variations of these standard data types,
such as small integer values or large text values, to help you customize exactly
how much space to reserve for each data field. Unfortunately, these customized
data types aren’t necessarily standardized between relational databases.

Data constraints
Besides the data field name and value, a data field can be marked with special data
constraints. Relational databases use data constraints to control how you place data
into a data field. The most popular data constraint is the primary key.

A primary key defines the table data field(s) that uniquely identify each individual
data record in the table. For example, if you’re retrieving an employee data record
and your company has two employees named John Smith, you’ll run into a prob-
lem trying to get the correct data for the correct employee. To solve this problem,

TABLE 1-1	 Standard Database Data Types
Data Type Description

int A whole number between –2,147,483,648 and 2,147,483,647

float A floating point number between –3.40283466E+38 and +3.40283466E+38

bool A Boolean true or false value

date A day value in the YYYY-MM-DD format

datetime A day and time value displayed in YYYY-MM-DD HH:MM:SS format

char(x) A fixed-length character string with x characters

varchar(x) A variable-length character string with x or fewer characters

text A variable-length character string of up to 65,536 characters stored as a binary value

452 BOOK 5 MySQL

relational databases allow you to add a special data field to tell you which John
Smith each data record refers to.

To do this, you must create an employee ID data field and assign a unique ID num-
ber to each employee. Because the new employee ID data field uniquely identifies
each employee record, you can specify it as the primary key for the Employees
table. The database server creates a separate hidden table relating the primary key
values to data record numbers, and then uses it as an index to quickly retrieve the
correct data record based on the primary key value.

Another popular data constraint you’ll run across is the is null restriction. If you
set a data field with the is null data constraint, the database server will prevent
you from entering a data record without a value in that data field.

Structured Query Language
The Structured Query Language (SQL) is a language for interacting with rela-
tional database systems that been around since the early 1970s. Over the years,
other database vendors have tried to mimic or replace SQL with their own query
languages. But despite their attempts, SQL still provides the easiest interface for
both users and administrators to interact with any type of relational database
system.

In 1986, the American National Standards Institute (ANSI) created the first SQL
standards. The U.S. government adopted them as a federal standard and named
it ANSI SQL89. Most commercial database vendors now use this SQL standard to
interface with their products.

The SQL standard has been evolving over the years, with new standards being
released to support new advanced database features. At the time of this writing,
the most current standard is SQL:2016.

The SQL language specifies a format that you use to send commands to the data-
base server. The SQL command format consists of:

»» A keyword: SQL keywords define the action the database server takes based
on the SQL statement. The SQL standard defines lots of different keywords
for performing lots of different actions. However, you’ll find yourself just
using a few standard keywords in your database programming, so it’s not
all that hard to remember them. Table 1-2 lists the popular ones you’ll
get to know.

In
tr

od
uc

in
g

M
yS

Q
L

CHAPTER 1 Introducing MySQL 453

»» An identifier: The SQL command identifier defines the database object used
in a command. This is most often a database name, table name, or the names
of data fields. The SQL identifiers help you select which data elements to
retrieve from the database and which table to select them from.

»» One or more literals (optional): SQL command literals define specific data
values referenced by the keyword. Literals are constant values, such as data
values to insert into a table or data values used to search within the table
data. You must enclose string literals in quotes (either single or double
quotes), but you can use numerical values without quotes.

The most common SQL command you’ll use in your web applications is the query.
A query is a SQL SELECT statement that searches the database for specific data
records. Here’s the basic format of a SELECT statement:

SELECT datafields FROM table

The datafields parameter is a comma-separated list of the data field names you
want the query to return. If you want to retrieve all the data field values for the
data records, you use an asterisk as a wildcard character.

You must also specify the specific table you want the query to search. To get
meaningful results, you must match your query data fields with the proper table.

SQL keywords are often identified with all capital letters in a SQL statement.
MySQL allows you to use either uppercase or lowercase for keywords. I use all
capitals in this book to help you identify the keywords within the SQL statements.

By default, the SELECT statement returns all the data records in the specified table.
You can use one or more modifiers to define how MySQL returns the data requested
by the query. Table 1-3 shows the more popular modifiers you’ll run into with SQL
queries.

TABLE 1-2	 SQL Keywords
Keyword Description

DELETE Removes a data record from a table

DROP Removes a table or database

INSERT Adds a new data record to a table

SELECT Retrieves data records from a table

UPDATE Modifies data within an existing data record in a table

454 BOOK 5 MySQL

The WHERE clause is the most common SELECT statement modifier. It allows you to
specify conditions to filter data from the table. For example:

SELECT lastname FROM Employees WHERE salary > 100000;

This SELECT statement only returns the last name of the employees with a salary
of over $100,000.

Having to use SQL to interact with a database server can seem a bit overwhelm-
ing at first — you have to learn an entirely new programming language besides
the languages you’re learning to build your dynamic web application. Don’t fret,
though. There are really only a handful of SQL statements that you’ll regularly
use during the course of your application development. You’ll start remembering
them in no time.

Presenting MySQL
The specific relational database server that I discuss in this book is the MySQL
database server. The MySQL server is the most popular database server used in
web applications — and for good reason. The following sections describe the fea-
tures of the MySQL server that make it so popular.

MySQL features
The MySQL database server was created by David Axmark, Allan Larsson, and
Michael Widenius as an upgrade to the mSQL database server and was first
released for general use in 1996. It’s now owned and supported by Oracle but
released as open-source software.

MySQL was originally created to incorporate indexing data to speed up data que-
ries in the mSQL database server, by using the indexed sequential access method
(ISAM). It did this by incorporating a special data management algorithm called
the MyISAM storage engine. This proved to be a huge success.

TABLE 1-3	 SQL Query Modifiers
Modifier Description

LIMIT Displays only a subset of the returned data records

ORDER BY Displays data records in a specified order

WHERE Displays a subset of data records that meet a specified condition

In
tr

od
uc

in
g

M
yS

Q
L

CHAPTER 1 Introducing MySQL 455

MySQL was initially recognized for its speed of accessing data. The MyISAM data
storage and indexing method proved to be a game changer in speeding up data
access from other types of DBMS packages. It wasn’t long before the Internet
world took notice, and MySQL became the DBMS package of choice for high-
volume web applications.

These days, MySQL has evolved to do more than just fast data queries. Develop-
ment is continually ongoing to add new features to MySQL. A short list of features
includes the following:

»» It was written in C and C++ and has been compiled to run on many different
platforms.

»» It incorporates a modular design approach to create a multi-layer server
design.

»» It supports multi-threading, making it easily scalable to incorporate multiple
CPUs if available.

»» It uses a thread-based memory allocation system.

»» It implements hash tables in memory to increase performance.

»» It supports client/server and embedded server environments.

»» It supports multiple data storage engines.

»» It implements all SQL functions using a class library.

»» It includes support for all standard SQL data types.

»» It offers a security system that supports both user-based and host-based
verification.

»» It includes support for large databases using more than 5 billion rows of data.

»» It provides application programming interfaces (APIs) for many common
programming languages (including PHP).

»» It incorporates many different character sets, allowing it to support many
different languages.

»» It provides both command line and graphical tools for common database
management.

Of these features, let’s take a closer look at two specific features to demonstrate
the versatility of MySQL. The following sections dive into the ability for MySQL
to support different database storage types, as well as how MySQL handles user
authentication.

456 BOOK 5 MySQL

Storage engines
As shown in the preceding section, the MySQL server uses a modular approach to
building the database server. One of those modules is how it stores and accesses
database data. This is called the storage engine.

The storage engine is the gatekeeper to your data and all requests to your data
go through it. The MySQL server incorporates several different types of storage
engines, shown in Table 1-4.

The MyISAM storage engine is what made MySQL famous, but it’s no longer being
developed by Oracle. The default and recommended storage engine for MySQL is
now the InnoDB storage engine.

The InnoDB storage engine supports many advanced database features found in
commercial databases, but initially it was known for not being all that fast. Devel-
opers had to decide which was more important to their application: performance
or fancy database features.

However, work has been done by the MySQL developers to increase the perfor-
mance of the InnoDB storage engine so that it comes close to the performance of
the MyISAM storage engine. This gives you the best of both worlds — advanced
database features and a high-performance storage engine, all as open-source
software!

TABLE 1-4	 The MySQL Storage Engines
Storage Engine Description

Archive Produces a special-purpose table for inserting and retrieving data, but not updating or
deleting it.

Blackhole Accepts data but does not store it. Used for development testing.

CSV Stores data in a comma-separated file format.

Federated Allows data access from a remote server without using replication.

Example A storage engine that does nothing. Used as a template for storage engine developers.

InnoDB An advanced storage engine that balances high reliability and high performance.

Memory Stores all data in memory for fast performance, but it doesn’t retain the data.

MyISAM The initial MySQL storage engine, known for being fast with few advanced features.

In
tr

od
uc

in
g

M
yS

Q
L

CHAPTER 1 Introducing MySQL 457

Data permissions
The MySQL database server handles access to database data using a two-tiered
approach:

»» The user account assigned to a user

»» The location from where the user connects to the server

MySQL considers your identity from both the user account you use to log into the
system, as well as the host from which you connect. That means you can control
access to your data not only to specific user accounts, but from where the users
happen to be when they log into the database server. For example, you can give a
user account full access to a database when she logs in from the local server but
restricted read-only access to the database when she logs in from a remote server.

MySQL does this by using an access control list (ACL) to define permissions to data-
bases, tables, and special features based on the identities. When you create an
identity in MySQL, you not only create a user account, but also specify the loca-
tion from which the access control applies. You can use wildcards to allow users to
have the same permissions from multiple locations.

MySQL uses a two-stage approach to verifying your database connection. First,
MySQL accepts or rejects the connection request based on the user ID/password
combination provided and whether the account is locked on the system. Then, if
the connection is granted, MySQL accepts or rejects the access request based on
database and table permissions.

A user account can have access to the database server, but not every database on
the server. You can create separate user accounts for each application database
that you create on the MySQL server. If your application requires more control,
you can even create separate user accounts that have access to only certain tables
within the same database!

As the database administrator you also have the ability to grant system-level
privileges to user accounts, such as the ability to create new databases or even
new user accounts.

The MySQL server has a single main administration user account named root. If
you forget the password to the root user account that may or may not be recover-
able, depending on your server setup and environment. It’s always a good idea to
keep track of the root user account’s password, but also to protect it so that no one
else can use it. If your system requires multiple administrators, give them each
a separate user account and grant those user accounts elevated privileges on the
database server so they can create databases and user accounts as needed.

458 BOOK 5 MySQL

Advanced MySQL Features
When you use the default InnoDB storage engine in MySQL, you have a wealth of
advanced database feature available for your applications to utilize. This section
walks through the more advanced features that the InnoDB storage engine brings
to the MySQL world.

Handling transactions
All database servers allow users to enter database commands to query and manip-
ulate data. What separates good database servers from bad ones is the way they
handle commands.

The database engine processes commands as a single unit, called a transaction.
A transaction represents a single data operation on the database. Most simplistic
database servers treat each command received — such as adding a new record
to a table or modifying an existing record in a table — as a separate transaction.
Groups of commands create groups of transactions.

However, some advanced database servers (such as the MySQL with the InnoDB
storage engine) allow you to perform more complicated transactions. In some
instances, it’s necessary for an application to perform multiple commands as a
result of a single action.

In a relational database, tables can be related to one another. This means that
one table can contain data that is related to the data in another table. In the store
example, the Orders table relied on data in both the Customers and Products
tables. Although this makes organizing data easier, it makes managing transac-
tions more difficult. A single action may require the database server to update
several data values in several different tables.

In the store example, if a new customer comes into the store and purchases a lap-
top computer, the database server must modify three tables:

»» Add a new data record to the Customers table

»» Add a new data record to the Orders table

»» Modify the Products table to subtract one from the laptop inventory value

For the action to be complete, all three of these actions must succeed. If any
one of the actions fails, the data will become corrupt. In an advanced database
server, you can combine all these actions into a single transaction. If any one of
the actions fails, the database server rolls back the other two actions to return

In
tr

od
uc

in
g

M
yS

Q
L

CHAPTER 1 Introducing MySQL 459

the database to the previous condition. This feature is crucial to have available
for your web applications!

Making sure your database
is ACID compliant
Over the years, database experts have devised rules for how databases should
handle transactions. The benchmark for all professional database systems is the
ACID test. No, we’re not throwing the server into an acid bath; the ACID test
is actually an acronym for a set of database features defining how the database
server should support transactions:

»» Atomicity

»» Consistency

»» Isolation

»» Durability

The following sections examine these four features and discuss how MySQL
implements them.

Atomicity
The atomicity feature states that for a transaction to be considered successful,
all steps within the transaction must complete successfully. Either all the steps
should be applied to the database, or none of them should. A transaction should
not be allowed to complete partway.

To support atomicity, MySQL uses a system called commit and rollback. Database
actions are only temporarily performed during a transaction. When it appears that
all the actions in a transaction would complete successfully, the transaction is
committed (the server applies all the actions to the database). If it appears that
any one of the actions would fail, the entire transaction is rolled back (any previ-
ous steps that were successful are reversed). This ensures that the transaction is
completed as a whole.

MySQL uses the two-phase commit approach to committing transactions. The
two-phase commit performs the transaction using two steps (or phases):

»» Prepare phase: A transaction is analyzed to determine if the database is able
to commit the entire transaction.

»» Commit phase: The transaction is physically committed to the database.

460 BOOK 5 MySQL

The two-phase commit approach allows MySQL to test all transaction commands
during the prepare phase without having to modify any data in the actual tables.
Table data is not changed until the commit phase is complete.

Consistency
The concept of consistency is a little more difficult than atomicity. The consis-
tency feature states that every transaction should leave the database in a valid
state. The tricky part here is what is considered a “valid state.”

Often, this feature is applied to how a database server handles unexpected crashes.
If the database takes a power hit in the middle of the commit phase of a multi-
action transaction, can it leave the tables in a state where the data makes sense?

MySQL utilizes two features to accomplish consistency:

»» Double-write buffering: With double-write buffering, before MySQL writes
data to the actual tables, it stores the data in a buffer area. Only after all the
transaction data is written to the buffer area will MySQL write the buffer area
data to the actual table data files.

»» Crash recovery: If there is a system crash before the buffer area is com-
pletely written to the table files, MySQL can recover the buffer area using the
crash recovery feature, which recovers submitted transactions from a
transaction log file.

Isolation
The isolation feature is required for multiuser databases. When there is more than
one person modifying data in a database, odd things can happen. If two people try
to modify the same data value at the same time, who’s to say which value is the
final value?

When more than one person tries to access the same data, the DBMS must act as
the traffic cop, directing who gets access to the data first. Isolation ensures that
each transaction in progress is invisible to any other transaction in progress. The
DBMS must allow each transaction to complete and then decide which transac-
tion value is the final value for the data. It accomplishes this task using a feature
called locking.

Locking does what it says: It locks data while a transaction is being committed to
the database. While the data is locked, other users can’t access the data, not even
for queries. This prevents multiple users from querying or modifying the data
while it’s in a locked mode.

In
tr

od
uc

in
g

M
yS

Q
L

CHAPTER 1 Introducing MySQL 461

There are two basic levels of locking that MySQL uses to support isolation:

»» Table-level locking: With table-level locking, any time a user requires a
modification to a data record in a table, the DBMS locks the entire table,
preventing other users from even viewing data in the table. As you can guess,
this has an adverse effect on database performance, especially in environ-
ments where there is a lot of change to the data in the database. Early DBMS
implementations used table-level locking exclusively.

»» Row-level locking: To solve the problems of table-level locking, many DBMS
implementations (including the MySQL InnoDB storage engine) now incorpo-
rate row-level locking. With row-level locking, the DBMS locks only the data
record that’s being modified. The rest of the table is available for other users
to access.

Durability
The durability feature states that when a transaction is committed to the data-
base, it must not be lost. This sounds like a simple concept, but in reality durabil-
ity is often harder to ensure than it sounds.

Durability means being able to withstand both hardware and software failures. A
database is useless if a power outage or server crash compromises the data stored
in the database.

MySQL supports durability by incorporating multiple layers of protection. The
same double-write buffer and crash recovery features mentioned for the consis-
tency feature also apply to the durability feature. MySQL writes all transactions
to a log file, writes the changes to the double-write buffer area, and then writes
them to the actual database files. If the system crashes during this process, most
of the time MySQL can recover the transaction within the process.

The onus of durability also rests on the database administrator. Having a good
uninterruptable power supply (UPS) for your database server, as well as perform-
ing regular database backups, is crucial to ensuring your database tables are safe.

Examining the views
The SQL programming language provides developers with the ability to cre-
ate some pretty complex queries, retrieving data from multiple tables in a single
SQL statement. However, for queries that span more than a couple of tables, the
SQL statement can become overly complex.

462 BOOK 5 MySQL

To help simplify complex query statements, some DBMS packages (including
MySQL) allow administrators to create views. A view allows you to see (or view)
data contained in separate database tables as if it were in a single table. Instead of
having to write a sub-select query to grab data from multiple places, all the data
is available in a single table view.

To a query, the view looks like any other database table. The DBMS can query
views just like normal tables. A view does not use any disk space in the database
files, because the DBMS generates the data in the view “on the fly” when a query
tries to access the data. When the query is complete, the view data disappears.
Figure 1-5 shows a sample view that you could create from the store database
example.

The view shown in Figure 1-5 incorporates some of the customer data from the
Customers table, product data from the Products table, and order data from the
Orders table. Queries can access all the fields in the view as if they belonged to a
single table.

You can always use a view to read data, but you may or may not be able to use the
view to insert new data or update existing data. It depends on the relationship
between the data fields in the view. Data fields related in a one-to-one relation-
ship can be inserted or updated, but data fields related in a one-to-many relation-
ship can’t.

Working with stored procedures
A stored procedure is a set of SQL statements that are commonly used by applica-
tions. Instead of each application needing to submit the multiple SQL statements,

FIGURE 1-5:
A view of

customer order
information.

In
tr

od
uc

in
g

M
yS

Q
L

CHAPTER 1 Introducing MySQL 463

you can create a stored procedure that contains the SQL statements and each
application just needs to run the stored procedure.

Stored procedures can also help with the performance of the application, because
less information needs to be sent between the client and the server (especially for
long procedures). Stored procedures also allows you to create your own library of
common functions in the database server to share among multiple applications.
This helps you performance-tune queries and ensure all the applications use the
same procedure to retrieve the data.

Pulling triggers
A trigger is a set of instructions that the DBMS performs on data based on an event
in the table that contains the data. Events that can trigger the instructions are
inserts, updates, or deletions of data contained in one or more tables. Here are the
most common triggers you’ll see:

»» AFTER DELETE: Perform the set of instructions after a data record has been
deleted from the table.

»» BEFORE DELETE: Perform the set of instructions before a data record is
deleted from the table.

»» AFTER INSERT: Perform the set of instructions after a data record has been
inserted into the table.

»» BEFORE INSERT: Perform the set of instructions before a data record is
inserted into a table.

»» AFTER UPDATE: Perform the set of instructions after a data record is updated
in the table.

»» BEFORE UPDATE: Perform the set of instructions before a data record is
updated in the table.

Triggers help you maintain data integrity within your database tables by moni-
toring when data is changed and having the ability to change related data at the
same time.

Working with blobs
Most database users are familiar with the common data types that you can store in
a database. These include integers, floating point numbers, Boolean values, fixed-
length character strings, and variable-length character strings. However, in the
modern programming world, support for lots of other data types is necessary. It’s

464 BOOK 5 MySQL

not uncommon to see web applications that are used to store and index pictures,
audio clips, and even short videos. This type of data storage has forced many pro-
fessional databases to devise a plan to store different types of data.

MySQL uses a special data type called the binary large object (BLOB) to store any
type of binary data. You can enter a BLOB into a table the same as any other
data type. This allows you to include support for any type of multimedia storage
within applications and still use all the fast retrieval and indexing methods of the
database.

Just because you can save large binary files in your tables doesn’t mean that it’s
necessarily a good idea to do it. Large binary files can quickly fill a database disk
space and slow down normal database queries. You’ll need to analyze your par-
ticular application requirements to determine if it’s better to store binary data
inside the database or store the binary data outside as standard files, with just a
pointer to the filename stored in the database.

CHAPTER 2 Administering MySQL 465

Administering MySQL

As you can tell from the previous chapter, the MySQL database server is a
crucial component in your dynamic web applications. It’s important that
you know how to interact with the MySQL database server to create the

database objects and user accounts required for your application. This chapter
examines the different methods you have available for interacting directly with
the MySQL database server in your application environment.

MySQL Administration Tools
There are lots of different tools available for interacting with a MySQL server to
help manage your database environment. Over the years, three particular tools
have risen to the top to be the most popular:

»» The MySQL command-line utilities

»» The MySQL Workbench graphical tool

»» The phpMyAdmin web-based tool

All these methods allow you to create, modify, and remove database objects in
the server, manage user accounts and privileges, and perform standard database
maintenance tasks such as backups and restores. They just all happen to use dif-
ferent environments to do that.

Chapter 2

IN THIS CHAPTER

»» Working from the command line

»» Using MySQL Workbench

»» Administering the server from
the web

»» Creating user accounts

»» Assigning database privileges to users

466 BOOK 5 MySQL

This section walks through the basics of these tools, showing you how to use them
to perform basic administration functions on the MySQL database server.

Working from the command line
Just about everything these days uses some type of graphical interface, but the
MySQL project still provides a method for interacting with the database directly
from a text command line in the Windows, Mac, and Linux environments. That
may seem old-fashioned, but the command line can often provide a handy inter-
face for quickly entering commands. It’s also great to use in emergencies — you
never know when you’ll find yourself working in a situation where the command
line is all you have to work with!

This section walks through how to perform standard database administration
functions with the MySQL server using just the command line.

Command-line tools
MySQL offers many scripts and programs that provide different ways for you to
interact with the MySQL server in a command-line environment. Table 2-1 lists
the command-line tools you’ll find in your MySQL server installation.

TABLE 2-1	 MySQL Command-Line Tools
Tool Description

innochecksum Checks for damaged MyISAM storage engine files

l4z_decompress Expands a mysqlpump archive file

myisam_ftdump Displays information about full text indexes in MyISAM files

myisamchk Repairs corrupt MyISAM storage engine files

myisamlog Displays the contents of the MyISAM log file

myisampack Compresses MyISAM storage engine table files

mysql Provides an interactive command-line interface to the MySQL server

mysqld The main MySQL database server program

mysqld_multi Manages multiple mysqld server processes on a server

mysqld_safe MySQL server startup script for Linux and Unix systems

mysql.server MySQL server startup script for Mac systems

mysqladmin Command-line administration tool

A
dm

in
is

te
ri

ng
 M

yS
Q

L

CHAPTER 2 Administering MySQL 467

Tool Description

mysqlbinlog Parses binary log files

mysqlcheck Analyzes, optimizes, and repairs MySQL tables

mysqldump Performs a database backup

mysqldumpslow Parses the MySQL slow query log

mysqlimport Loads data from a file into a database

mysqlpump Generates a SQL file to migrate a database to another SQL server

mysqlsh A MySQL shell for creating scripts

mysqlshow Displays database, table, and data field information

mysqlslap Emulates client load on a MySQL server

perror Displays a text description from a MySQL error code number

zlib_decompress Expands compressed output from the mysqlpump command

As you can see in Table 2-1, there are quite a few command-line utilities that
MySQL provides to help you out as a database administrator. Most likely, you’ll
never use most of them, but it’s good to know they’re there (and what they do) in
case you ever need them.

For most normal interactions with the MySQL server, you’ll use the mysql
command-line program, which is discussed in the next section.

Exploring the MySQL client tool
The mysql command provides a text-based interactive interface (commonly called
a command-line interface, or CLI) to the MySQL server. When you start the com-
mand, you’ll get an interactive prompt:

C:\xampp\mysql\bin>mysql --user=root --password

Enter password:

Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MariaDB connection id is 4

Server version: 10.1.28-MariaDB mariadb.org binary distribution

Copyright (c) 2000, 2017, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [(none)]>

468 BOOK 5 MySQL

From the > prompt, you can submit SQL statements directly to the server to inter-
act with the databases contained on the server. There are also some built-in com-
mands available in the CLI to help manage your database objects.

The mysql command provides a lot of command-line parameters that allow you to
customize what it does when you start it. You can use the -? parameter to display
all the available parameters and what they do. There are lots of parameters that
provide a lot of features that, again, you’ll most likely never use. Usually the only
parameters you’ll need to worry about are --user and --password.

These parameters allow you to specify the user ID and password to use when con-
necting to the MySQL server (by default the mysql command attempts to connect
to the MySQL server using the user account of the currently logged-in user). These
days it’s not a good idea to enter your password in plain text on the command line.
If you use the --password parameter by itself (without a specified value), the
mysql command prompts you to enter your password as a hidden entry, as I did
in the preceding example.

Occasionally, you may find yourself in an environment where you need to connect
to a remote MySQL server. If that’s the case, add the --host parameter to specify
the host name or address of the remote server.

Besides standard SQL statements, the mysql command has quite a few special
internal commands of its own. These commands help you set features within the
CLI that regulate how it behaves. Each command has a full-name version and a
shortcut-character version. If you want to use the shortcut, precede the shortcut
character with a backslash. Table 2-2 lists the commands and their shortcuts that
are currently available.

TABLE 2-2	 The mysql Commands
Command Shortcut Description

charset \C Switch to another character set for the output

connect \r Reconnect to the server with a specified database

delimiter \d Set the delimiter used between SQL statements (the default is a semicolon)

edit \e Edit the command using the default editor

ego \G Send command to the MySQL server and display results

exit \q Exit the command-line interface

go \g Send the command to the MySQL server

help \h Display available commands

A
dm

in
is

te
ri

ng
 M

yS
Q

L

CHAPTER 2 Administering MySQL 469

Command Shortcut Description

nopager \n Disable the pager and send output to the standard output

notee \t Don’t redirect output to an output file

nowarning \w Don’t display MySQL warning messages

pager \P Define a program to use to page output (such as more)

print \p Print the current command

prompt \R Change the command-line prompt

quit \q Quit the command-line interface

rehash \# Rebuild the command-line completion hash

source \. Execute the specified SQL script file

status \s Retrieve status information from the MySQL server

tee \T Redirect output to specified output file as well as the display

use \u Use another database as the default database

warnings \W Display MySQL warnings after each command

After you enter the command, the mysql program processes it and displays the
results within the CLI environment. Figure 2-1 demonstrates the output from
using the status command.

FIGURE 2-1:
The status
command

output.

470 BOOK 5 MySQL

To exit the mysql command prompt environment, just type exit.

As you can see from my examples, some all-in-one Apache/MySQL/PHP packages
(such as XAMPP) use the MySQL sister application, MariaDB, instead of the origi-
nal MySQL server package. The MariaDB package is a spinoff from the original
MySQL package done by the original developers after Oracle took over develop-
ment of the MySQL package. They created MariaDB to be a complete replace-
ment for the MySQL server. To maintain complete compatibility between the two
packages, the MariaDB developers use the same mysql commands, but insert the
MariaDB signature in the command output, as you can see in Figure 2-1.

Using MySQL Workbench
Working from the command line can make you feel like a hard-core adminis-
trator, but relying on a graphical interface doesn’t make you any less of a true
administrator. Many administrators prefer to work with graphical tools, espe-
cially if they’re already working in a graphical desktop environment.

The MySQL project includes a great graphical administration tool called
Workbench. It’s not often installed by default in most MySQL setups, but it’s not
hard to download and install yourself. This section walks through that process
and shows you some of the features available in the graphical interface.

Installing the Workbench package
You can get the Workbench tool directly from the MySQL website (https://dev.
mysql.com/downloads/workbench). The Download page is shown in Figure 2-2.

Scroll to the bottom of the page to see the section for downloading the program
installation package. Just follow these steps to download and install Workbench:

1.	 Select the OS where you plan to run Workbench.

Because it’s a binary program, you need to download a separate package for
each OS environment where you plan to use it.

2.	 Click the Download button to start the download.

If you’re a Windows user, be careful — there are two download options
available. One option downloads the complete MySQL server along with
Workbench. If you already have an all-in-one package installed, you don’t need
to download the MySQL server, only the Workbench client.

3.	 When the download completes, run the download package and follow
the step-by-step instructions on installing Workbench on your
workstation.

https://dev.mysql.com/downloads/workbench
https://dev.mysql.com/downloads/workbench

A
dm

in
is

te
ri

ng
 M

yS
Q

L

CHAPTER 2 Administering MySQL 471

If you’re using Workbench on a Windows workstation, you’ll need to have both
the Microsoft .NET 4.5 and Visual C++ 2015 Redistributable libraries installed. You
can find both of these library packages on the Microsoft developer website. The
Workbench installation provides the URLs that you need to get them.

Exploring the Workbench options
After you install Workbench on your workstation and launch it, you’ll be greeted
by the main window, shown in Figure 2-3.

Before you can get started with your database administration, you’ll need to tell
Workbench how to find and log into your MySQL server. To do that, follow these
steps:

1.	 Click the Plus sign next to the MySQL Connections heading to add a new
connection.

This opens the Setup New Connection dialog box, show in Figure 2-4.

FIGURE 2-2:
The MySQL
Workbench

download
web page.

472 BOOK 5 MySQL

2.	 Enter a unique name for the connection in the Connection Name
text box.

3.	 Enter the IP address or hostname for the MySQL server in the Hostname
textbox.

If you’re running MySQL server on your workstation (such as if you’re using the
XAMPP package), keep the default IP address of 127.0.0.1.

FIGURE 2-3:
The main

Workbench
window.

FIGURE 2-4:
The Workbench

Setup New
Connection
dialog box.

A
dm

in
is

te
ri

ng
 M

yS
Q

L

CHAPTER 2 Administering MySQL 473

4.	 Enter the user account you use to log into the MySQL server in the
Username textbox.

For full administration privileges, use the root user account.

5.	 Click OK to save the connection information.

After you create the connection, it appears as an option in the main Workbench
window. Click that entry to start the connection to the database.

The MySQL Workbench tool assumes you’re working with the latest version of
MySQL server. If your MySQL installation isn’t the latest version (as is usually the
case with all-in-one packages), Workbench will display a warning message when
you connect, informing you that not all the features will be supported. Just click
the Continue Anyway button to continue with the connection.

When Workbench establishes the connection, it produces the main administration
window, as shown in Figure 2-5.

The main administration window consists of five sections:

»» Navigation: Provides links to start and stop the server, monitor client
connections, administer user accounts, export and import data, watch the

FIGURE 2-5:
The Workbench
administration

window.

474 BOOK 5 MySQL

performance of the databases and tables, and add, modify, or remove
databases and tables from the system schema.

»» Query1: Submit SQL queries directly to the server for testing.

»» SQL Additions: Provides online help with SQL statements, showing the
context help for the SQL statements you enter into the Query1 panel.

»» Information: Displays information on the connection session or an individual
object that you select from the Query1 panel.

»» Action Output: Displays the status of any actions you submit to the server,
such as queries.

When you submit a query (or group of queries) from the Query1 panel, a new panel
appears under the Query1 panel, showing the results from the transaction. If the
transaction was a SELECT statement, the data records from the result set appear
in a grid, as shown in Figure 2-6.

From the Workbench interface, you can perform all the same functions that you
can from the MySQL command-line interface but with a fancy graphical twist,
making it a snap to manage your MySQL server!

FIGURE 2-6:
Submitting

a query
using MySQL
Workbench.

A
dm

in
is

te
ri

ng
 M

yS
Q

L

CHAPTER 2 Administering MySQL 475

Using the phpMyAdmin tool
Quite possibly the most popular graphical tool for working with MySQL servers is
the web-based phpMyAdmin tool. As the name suggests, the phpMyAdmin tool is
a PHP web application that interfaces with a MySQL server to provide a wealth of
administration functions, all as a website that you can access from any browser!

The phpMyAdmin tool has become so popular that it’s usually installed by default
in many Apache/MySQL/PHP packages, such as XAMPP, MAMP, and LAMP, as
well as supported by most commercial web hosting companies.

Since it’s a website, to launch the phpMyAdmin application you need to open your
browser and enter the URL that points to the package on your server. For most
installations that’s just http://localhost/phpmyadmin.

If you had to move the Apache web server to an alternative TCP port in your
installation, you need to include that port in the URL: http://localhost:8080/
phpmyadmin.

Depending on your particular environment, the phpMyAdmin package may be
configured by default to automatically log into the MySQL server when you start
it (such as in XAMPP and MAMP). If not, you’ll be greeted by a login form to enter
a MySQL user account and password. For full access privileges, log in using the
root user account.

When you’re logged into phpMyAdmin, you’ll see the main window, as shown in
Figure 2-7.

The main phpMyAdmin window displays the existing databases on the server on
the left-hand side of the window. At the top is the navigation area, allowing you
to select from 12 different options:

»» Databases: Create and manage databases.

»» SQL: Submit SQL statements directly to the server.

»» Status: Displays the status of connections, server processes, and database
queries.

»» User accounts: Create and manage user accounts.

»» Export: Create a backup of one or more databases.

»» Import: Restore one or more databases.

http://localhost/phpmyadmin
http://localhost:8080/phpmyadmin
http://localhost:8080/phpmyadmin

476 BOOK 5 MySQL

»» Settings: Manage settings for phpMyAdmin.

»» Replication: Control the master and slave replicas if created.

»» Variables: Manage the MySQL server configuration settings.

»» Charsets: Display the character sets available for the server.

»» Engines: Display the storage engines available for the server.

»» Plugins: Display plugins installed for phpMyAdmin.

As you can tell, phpMyAdmin also gives you full access to all the server features
that you’d need to manage as the MySQL server administrator, all from a simple
web interface!

Now that you’ve seen the three most popular administrator interfaces used for
working with a MySQL server, the next sections take a look at doing some basic
database administration work using each interface.

FIGURE 2-7:
The main

phpMyAdmin
window.

A
dm

in
is

te
ri

ng
 M

yS
Q

L

CHAPTER 2 Administering MySQL 477

Managing User Accounts
One of the basic administration functions you need to perform in your MySQL
server is creating and maintaining user accounts. By default, the MySQL server
installs with a single user account, root, which has full access to everything on
the database server. It’s not a good idea to use this user account in web applica-
tions to access the databases. If your application should become compromised,
the attacker would have full access to the database server, which would definitely
cause a bad day for you.

This section walks through how to create and manage MySQL user accounts using
each of the three popular MySQL tools.

Creating a user account
It’s usually a good idea to create a separate user account for each web application
that uses the MySQL server. That way you can restrict each user account to only
access the single database used for the application, helping to prevent accidental
data access and modification.

Just how you do that depends on the interface you’ve chosen to use to interact
with the MySQL server.

From the MySQL command line
Managing user accounts from the MySQL CLI requires that you know a few SQL
statements. To create a new user account, you use the CREATE USER statement.
Here’s the basic format for that:

CREATE USER username@location IDENTIFIED BY password;

As noted in Chapter 1 of this minibook, the MySQL server tracks user privileges
based on a username and the location from where the user logs into the server.
The CREATE USER statement lists both of these items in the definition. You can
create separate user@location combinations if you desire to grant different priv-
ileges to applications depending on where they’re running.

To create a new MySQL server user account, follow these steps:

1.	 Open a command-line interface in your OS environment.

For Windows, that’s the Command Prompt tool. For macOS, that’s the Terminal
utility.

478 BOOK 5 MySQL

2.	 Navigate to the folder that contains the MySQL server programs.

If you’re using the XAMPP package on Windows, the command is

cd \xampp\mysql\bin

For the macOS environment, the command is

cd /Applications/XAMPP/mysql/bin

3.	 Enter the mysql command to start the CLI, specifying the root user
account and prompting for the password:

mysql --user root --password

For the macOS and Linux environments, you may have to precede the mysql
command with the ./ symbol to tell the OS that the program is located in the
current folder.

4.	 Enter the root user account password at the prompt.

For XAMPP, the password is empty, so just press Enter.

5.	 At the > prompt, type the CREATE USER command to create a new user
account:

MariaDB [(none)]> CREATE USER user1@localhost IDENTIFIED BY

'MyL0ngP@ssword';

Query OK, 0 rows affected (0.08 sec)

MariaDB [(none)]>

6.	 Type exit to leave the MySQL CLI.

7.	 Type exit at the command-line prompt to exit the Command Prompt or
Terminal session.

Now you have a new user account named user1 that can log into the MySQL server.

Using Workbench
Since the MySQL Workbench is a graphical tool, you don’t need to know any SQL
statements to create user accounts. You can create new accounts from the graphi-
cal interface by simply filling out a form. Follow these steps to do that:

1.	 Launch the MySQL Workbench tool from your workstation environment.

2.	 Select the option to connect to your MySQL server.

A
dm

in
is

te
ri

ng
 M

yS
Q

L

CHAPTER 2 Administering MySQL 479

3.	 From the main Workbench window, click the Users and Privileges link in
the Management section under the Navigation pane.

The Users and Privileges window, shown in Figure 2-8, appears.

Notice that the window displays a complete list of the user accounts already
available for the server. You should see the user1 account you created from
the command line, as well as the entry for the root user account.

4.	 To add a new user account, click the Add Account button, located toward
the bottom of the window.

5.	 Fill in the form to specify a new user’s login name of user2, the host
location of localhost, and a password of MyL0ngP@ssword.

Figure 2-9 shows this process.

6.	 Click Apply at the bottom of the window to create the user account.

7.	 Close the MySQL Workbench tool when complete.

That’s all there is to creating a new user account from Workbench.

FIGURE 2-8:
The MySQL

Workbench Users
and Privileges

window.

480 BOOK 5 MySQL

Using phpMyAdmin
Because the phpMyAdmin tool is also a graphical interface, creating a new user
account isn’t all that much different from using Workbench, just from a web
environment. Follow these steps to create a new user account using phpMyAdmin:

1.	 Open your browser and enter the URL to get to the phpMyAdmin tool for
your environment.

If you’re using XAMPP, enter the following URL:

http://localhost:8080/phpmyadmin

You may need to use a different TCP port depending on your web server.

2.	 Click the User Accounts button at the top of the main phpMyAdmin
web page.

This produces the User Accounts Overview page, shown in Figure 2-10.

3.	 To create a new user account, click the Add User Account link in the New
section.

The Add User Account page appears.

4.	 For the username, type user3.

FIGURE 2-9:
Creating a new

user account
using Workbench.

A
dm

in
is

te
ri

ng
 M

yS
Q

L

CHAPTER 2 Administering MySQL 481

5.	 From the Host Name drop-down list, choose Local.

6.	 For the password form fields, type MyL0ngP@ssword.

Figure 2-11 shows what these entries should look like.

7.	 Scroll to the bottom of the web page and click the Go button.

8.	 Click the User Accounts button at the top of the web page to view the
user account list to verify the new user account.

9.	 Click the Exit icon on the left side of the web page to close the session,
and then close your browser window.

As you can see, creating user accounts in the phpMyAdmin environment isn’t all
that different from the Workbench environment, because they both use similar
graphical interfaces to build and submit the CREATE USER SQL statement for you!

Managing user privileges
After you create a user account for your web application, you’ll need to grant it
privileges to use the database that supports the application. As part of a security
feature, MySQL only grants new user accounts the ability to log into the server —
they don’t have access to any data on the server by default.

FIGURE 2-10:
The User
Accounts
Overview

window in
phpMyAdmin.

482 BOOK 5 MySQL

To solve that, you need to use the GRANT SQL statement, using either the MySQL
CLI or one of the fancy graphical tools you’ve just learned how to use. The basic
format of the GRANT statement is:

GRANT privileges ON objects TO user;

The privileges list controls just what access the user account has on the data-
base objects defined in the objects list. MySQL allows you to grant as many or
as few privileges to a user account as you need, providing very fine control over
database access. Table 2-3 lists the privileges that you can use.

FIGURE 2-11:
Entering a new
user account in

phpMyAdmin.

TABLE 2-3	 MySQL Privileges
Privilege Description

ALL All privileges

ALTER The ability to change a database or table definition

ALTER ROUTINE The ability to change or remove a stored routine

CREATE The ability to create a new database or table within a database

A
dm

in
is

te
ri

ng
 M

yS
Q

L

CHAPTER 2 Administering MySQL 483

Privilege Description

CREATE ROUTINE The ability to create a new stored routine

CREATE TABLESPACE The ability to create a new database storage area

CREATE TEMPORARY TABLES The ability to create temporary tables in a database

CREATE USER The ability to create, rename, or remove user accounts on the server

CREATE VIEW The ability to create or change a database view

DELETE The ability to remove data from tables

DROP The ability to remove databases or tables

EVENT The ability to use events in the event scheduler

EXECUTE The ability to run stored routines

FILE The ability to cause the server to read or write to files

GRANT OPTION The ability to add or remove privileges to other users

INDEX The ability to create or remove table indexes

INSERT The ability to add new data to tables

LOCK TABLES The ability to lock tables for data access

PROCESS The ability to see all the database processes

PROXY The ability to use proxying

REFERENCES The ability to create and remove foreign key relationships

RELOAD The ability to force database writes to files

REPLICATION CLIENT The ability to list replication servers and clients

REPLICATION SLAVE The ability to enable replication slaves to contact the server

SELECT The ability to query databases and tables

SHOW DATABASES The ability to list all the databases on the server

SHOW VIEW The ability to list all the views on the server

SHUTDOWN The ability to stop the MySQL server

SUPER The ability to have administrative control of the MySQL server

TRIGGER The ability to create and remove triggers

UPDATE The ability to modify existing data in tables

USAGE The ability to log into the MySQL server, but no data access

484 BOOK 5 MySQL

There are two levels of privileges in MySQL:

»» Global privileges: Apply to all database objects

»» Local privileges: Apply to a specific database or table

To see what global privileges an existing user account has from the CLI, use the
SHOW GRANTS statement, as shown in Figure 2-12.

The output shows that the user1 user account only has USAGE global privileges, so
it can log into the database server, but not access any data.

To grant privileges to a specific database, you must list the privileges in the GRANT
statement, along with the specific database:

GRANT SELECT ON phpmyadmin.* TO user1@localhost;

Query OK, 0 rows affected (0.00 sec)

MariaDB [(none)]>

The wildcard character used in the database object list indicates that the privileges
apply to all the tables contained in the phpmyadmin database. If needed, you could
apply specific privileges to individual tables within your application.

Now you can log in using the user1 user account and access the phpmyadmin
database:

FIGURE 2-12:
Displaying global

user privileges
from the CLI.

A
dm

in
is

te
ri

ng
 M

yS
Q

L

CHAPTER 2 Administering MySQL 485

C:\xampp\mysql\bin>mysql --user=user1 --password

Enter password: **************

Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MariaDB connection id is 35

Server version: 10.1.28-MariaDB mariadb.org binary distribution

Copyright (c) 2000, 2017, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [(none)]> use phpmyadmin;

Database changed

MariaDB [phpmyadmin]>

Doing the same thing from one of the graphical interfaces is similar, but just
using a graphical form. Follow these steps to grant database privileges to a user
account using Workbench:

1.	 Start the Workbench application and then click the connection icon to
connect to your MySQL server.

2.	 Click the Users and Privileges link in the Navigation section on the right
side of the window.

This displays the Users and Privileges window, as shown in Figure 2-13.

FIGURE 2-13:
The Workbench

Users and
Privileges
window.

486 BOOK 5 MySQL

3.	 Click the user2 user account in the list.

4.	 Click the Schema Privileges tab at the top of the display section.

The current global and database privileges granted to the user account appear.

5.	 Click the Add Entry button.

The New Schema Privilege Definition form, shown in Figure 2-14, appears.

6.	 Click the Selected schema radio button, select the phpmyadmin database
from the drop-down list, and click OK.

The Details for Account user2@localhost window, shown in Figure 2-15,
appears.

7.	 Check the SELECT check box in the Object Rights section to allow the
user2 account access to view and query tables in the phpmyadmin
database.

8.	 Click the Apply button at the bottom of the window to apply the new
privileges to the user account.

As you can probably guess, using the phpMyAdmin tool to grant privileges is very
similar to how you did it using the Workbench tool. Follow these steps:

1.	 Click the User Accounts tab at the top of the main phpMyAdmin web page.

The list of the user accounts currently configured in the MySQL server appears.
You should see the user1 and user2 user accounts that you’ve already
created, as shown in Figure 2-16.

FIGURE 2-14:
The Workbench

form to add
schema

privileges.

A
dm

in
is

te
ri

ng
 M

yS
Q

L

CHAPTER 2 Administering MySQL 487

FIGURE 2-15:
Adding schema
privileges using

Workbench.

FIGURE 2-16:
Using the

phpMyAdmin
tool to display
user accounts.

488 BOOK 5 MySQL

FIGURE 2-17:
Setting

database
privileges
using the

phpMyAdmin
tool.

2.	 Click the Edit Privileges link for the user3 user account.

3.	 Click the Database button at the top of the Edit Privileges page.

4.	 Select the phpmyadmin database from the list and then click the Go
button.

5.	 Check the SELECT check box and then click Go.

Figure 2-17 shows the web page for displaying the privileges set for the user3 user
account on the phpmyadmin database.

All three methods produce the exact same results, so feel free to use whichever
tool you prefer!

CHAPTER 3 Designing and Building a Database 489

Designing and Building
a Database

In the preceding chapter, you learned your way around the MySQL server inter-
face tools. The next step in the process of building a dynamic web application is
to create a database and tables for the data required for your application.

In this chapter, I show you how to determine just what data is required for an
application and how to divide it into tables to manage the data. Then I show you
how to create databases using the popular MySQL server interface tools. Finally,
I explain how to create the tables by using each of the tools, so that you can
manage the data in your applications.

Managing Your Data
When you start out a new dynamic web application, your first decision, before you
even start any coding, is how to handle the application data. Often you’re faced
with a myriad of data elements you need to track, such as employee, customer,
and product information for a store. The trick to successfully managing all that
information is in how to sort it all out.

Chapter 3

IN THIS CHAPTER

»» Understanding how to design a
database

»» Creating a database in MySQL

»» Building tables using different tools

490 BOOK 5 MySQL

The process of structuring application data into tables is called database normal-
ization. The key to database normalization is to build your database so that your
application can quickly and easily add, modify, delete, and search for data con-
tained in the tables, and do it with a minimum amount of server overhead. For
large applications, that can be easier said than done!

Fortunately, many very smart people have worked out some standard rules you
can follow for organizing the data in your applications. These rules are called
normal forms. Each normal form defines a set of standards to follow to organize
and protect the data in your application. Each normal form builds on the other
normal forms to provide a tiered approach to organizing data. Although there are
many different normal forms, for most applications you just need to follow three:
the first, second, and third normal forms. These are described in the following
sections.

The first normal form
In the first normal form, the idea is to organize the application data to find related
data elements and group them into tables, identify the unique data elements
with a key to make them easier to find, and eliminate any redundant data stored
in tables.

The first part of the rule specifies to group related data into separate tables. In the
store example from Chapter 1 of this minibook, you create three tables for a store
application by grouping employee information into an Employees table, customer
information into a Customers table, and product information into a Products
table. That covers the first part of the first normal form!

The second part of the rule specifies that you should provide a way to uniquely
identify each individual data record in each of the tables. You do that by defining
a primary key data field for each table. Sometimes that can be done using existing
data elements; other times it requires that you add new data elements.

In the Employees table, you can’t necessarily use one of the existing data values to
point to a specific employee — there could be multiple John Smiths working at the
company, or there could be multiple employees with the same address. It’s even
possible to have multiple employees with the same birth date.

The solution is to create a separate data field that assigns a unique value to each
employee. The application assigns a unique employeeid to each employee that it
can use to find individual employees. This data field is designated at the primary
key for the Employees table. The primary key guarantees that you’ll retrieve the
information for a single employee based on a unique employeeid value. You then
do the same thing for the Customers and Products tables.

D
es

ig
ni

ng
 a

nd
 B

ui
ld

in
g

a
D

at
ab

as
e

CHAPTER 3 Designing and Building a Database 491

The last part of the rule specifies that you should eliminate any redundant data
contained in the table. For example, if an employee has multiple phone num-
bers, it may not be a good idea to have multiple phone data fields in the Employ-
ees table. How many should you create? What if you create home and cellphone
number data fields, but then need to add an employee’s summer house number?
You can’t just continue adding new data fields to the table all the time.

The solution is to create a separate table with the phone number information. The
phone number table can have multiple data records with the same employeeid
data values, but each with a different phone number. To find all the phone num-
bers for an employee, just query the Phone Numbers table with that employeeid.
Now you can accommodate as many or as few phone numbers for each employee
without wasting data field space in the Employees table.

The second normal form
The second normal form specifies that you should create separate tables for data
fields that could apply to multiple tables. In the store example, this would apply
to how you track customer orders.

In this application, customers place orders, so the orderid value could be tracked
by customerid. However, orders contain one or more products, so the order could
be tracked by productid. This presents a problem.

Adding the order information directly in the Customers table would be bad. Hope-
fully, your customers will have multiple orders, so each order data record would
need to duplicate the customer’s information. That would violate the data redun-
dancy rule. Plus, it wouldn’t work putting order information in the Products table,
because multiple products could also be in the same order.

The solution is to create a separate Orders table, and relate that table to both the
Customers and Products tables. Each order data record would use the customerid
and productid primary key values from the Customers and Products tables so
that it could relate the order item back to a customer and the products it contains.

The third normal form
The third normal form defines how to work with data fields that don’t neces-
sarily depend on the primary key in a table but need to be searched. This level of
normalization depends heavily on just how your application uses the data that it
stores.

An example of this would be the startdate data field in the Employees table.
If your application needs to perform a lot of queries to find employees who’ve

492 BOOK 5 MySQL

worked at the company for a specific number of years, it could help the applica-
tion performance to create a separate table with the startdate values, separate
from the Employees table. This helps speed up the query process by reading a
smaller table with the one value instead of the entire Employees table. This is
often referred to as an index table.

The index table contains data that is commonly queried in the application but is
separate from the primary key of the table. If your application needs to query the
startdate of employees as a primary function, it will help increase the perfor-
mance of those queries by creating a separate index table of the startdate values
contained in the Employees table.

However, index tables come with drawbacks. As you insert each new employee
data record, the database system must now make two entries: one in the Employ-
ees table and another in the startdate index table. That will slow down the
performance of adding new employee data records!

As you can see, this produces a trade-off. If your application queries the
startdate of employees a lot, it would help to implement the third normal form
rule and create the separate index table. If not, it would be best to ignore the third
normal form rule and not create the separate table. It all comes down to knowing
how your application and your application users work!

Creating Databases
After you determine the structure required to support your application data,
you can start creating it in the MySQL server. The first step in that process is to
create a database for the application. This section walks through the different
ways to create a new database using the different MySQL tools covered in the
previous chapter.

Using the MySQL command line
To create a new database from the MySQL command line interface (CLI) you use
the CREATE DATABASE SQL statement. Depending on your needs and environment,
this command can be either very simple or very complex. If you just want to cre-
ate a database that uses the server default character set settings, just specify the
name of the database in the command:

D
es

ig
ni

ng
 a

nd
 B

ui
ld

in
g

a
D

at
ab

as
e

CHAPTER 3 Designing and Building a Database 493

MariaDB [(none)]> CREATE DATABASE dbtest1;

Query OK, 1 row affected (0.00 sec)

MariaDB [(none)]>

You now have a new database!

On Mac, Linux, and Unix systems, the database names are case sensitive; on
Windows systems, they’re case-insensitive. This can cause all sorts of problems
if you migrate your database from one environment to another, so be careful with
using mixed-case database names! Your best bet is to stick with the same case for
all characters in the database name.

To make sure the database was actually created, use the SHOW DATABASES state-
ment at the CLI to display the databases contained on the server:

MariaDB [(none)]> SHOW DATABASES;

+--------------------+
| Database |

+--------------------+
| dbtest1 |

| information_schema |

| mysql |

| performance_schema |

| phpmyadmin |

| test |

+--------------------+
6 rows in set (0.00 sec)

MariaDB [(none)]>

The database you created should appear in the list of databases. If you’d like to
see a little more detail about the new database, use the SHOW CREATE DATABASE
statement:

MariaDB [(none)]> SHOW CREATE DATABASE dbtest1;

+----------+--+
| Database | Create Database |

+----------+--+
| dbtest1 | CREATE DATABASE `dbtest1` /*!40100 DEFAULT CHARACTER SET latin1*/|

+----------+--+
1 row in set (0.00 sec)

MariaDB [(none)]>

494 BOOK 5 MySQL

The output from the SHOW CREATE DATABASE statement indicates that the data-
base is using the latin1 character set. The character set defined for your database
may be different, depending on the default settings in your MySQL server. If you
need to create a database using a specific character set, you can specify that in the
CREATE DATABASE statement:

MariaDB [(none)]> CREATE DATABASE dbtest1

 -> CHARACTER SET latin1

 -> COLLATE latin1_general_cs;

Query OK, 1 row affected (0.00 sec)

MariaDB [(none)]>

This statement creates the dbtest1 database using the latin1 character set, and
the latin1_general_cs collation.

CHARACTER SETS AND COLLATIONS
MySQL supports different character sets and collations for storing data. The charac-
ter set defines the binary code MySQL uses to store character text, while the collation
defines the algorithms used to compare text values. MySQL uses a cascading method
of assigning character sets and collations. If you define a default character set and col-
lation for the server, they’ll be used when you create new data objects that don’t specify
a character set or collation. If you define a default character set and/or collation for a
database, those will override the server defaults. If you then create a new table, it will
use the character set and collation defined for the database by default. If you define
a character set and/or collation for a table, those will override any database or server
defaults.

The latin1 character set supports Western European languages. If your application
needs to support text from other languages, use the utf8 character set. Likewise,
the latin1_general_ci collation compares text based on the latin1 character
set. The ci part of the collation name indicates that comparisons are made in case-
insensitive mode, so uppercase and lowercase letters will match. If your application
needs to support case-sensitive comparisons, you’ll want to specify a collation that ends
with cs, such as the latin1_general_cs collation.

You can see what character sets your particular MySQL server supports by using the
SHOW CHARACTER SET statement. This lists the character sets and the default collation
that MySQL will use with that character set. To see the collations that are available, use
the SHOW COLLATION statement.

D
es

ig
ni

ng
 a

nd
 B

ui
ld

in
g

a
D

at
ab

as
e

CHAPTER 3 Designing and Building a Database 495

If you need to remove a database from the MySQL server, you use the DROP
statement:

MariaDB [(none)]> DROP DATABASE dbtest1;

Query OK, 0 rows affected (0.00 sec)

MariaDB [(none)]> SHOW DATABASES;

+--------------------+
| Database |

+--------------------+
| information_schema |

| mysql |

| performance_schema |

| phpmyadmin |

| test |

+--------------------+
5 rows in set (0.00 sec)

MariaDB [(none)]>

Be careful using the DROP and DELETE SQL statements! The DROP statement
removes the entire object, while the DELETE statement removes the data but keeps
the object.

Using MySQL Workbench
The MySQL Workbench tool provides a nice graphical environment for you to eas-
ily create databases. The Schemas section of the Navigator pane displays the cur-
rent databases created on the server. (Remember: Workbench refers to databases
as schemas.)

To create a new database using Workbench, follow these steps:

1.	 Right-click in the Schemas section and select Create schema from the
pop-up menu.

A New schema form opens in the left-hand section of the window, as shown in
Figure 3-1.

2.	 Enter the name of the database in the Name text box.

3.	 Select a character set and appropriate collation from the Collation
drop-down menu.

You can leave the Server Default value to use the default character set and
collation settings for the server.

496 BOOK 5 MySQL

4.	 Click Apply.

The Workbench Create Database Wizard appears, which walks you through the
database creation process. First, the CREATE DATABASE statement generated
by the information you entered into the form appears, as shown in Figure 3-2.

FIGURE 3-1:
Creating a new
database using

Workbench.

FIGURE 3-2:
The Workbench

Create Database
Wizard.

D
es

ig
ni

ng
 a

nd
 B

ui
ld

in
g

a
D

at
ab

as
e

CHAPTER 3 Designing and Building a Database 497

5.	 Click Apply to submit the generated SQL statement to the MySQL server
to create the database.

6.	 When the MySQL server runs the statement, the wizard displays the
results, as shown in Figure 3-3.

If the SQL submission was successful, the new database will appear under the
Schemas section in the left-hand section of the window.

If you need to remove a database using Workbench, simply right-click the database
entry in the Schemas list and then select the Drop schema menu entry. Simple!

Using phpMyAdmin
As you might guess, creating a database in the phpMyAdmin web-based graphical
tool is similar to using Workbench. Here are the steps to do that:

1.	 After you open the phpMyAdmin tool in your browser, click the
Databases button in the top Navigation bar.

Figure 3-4 shows the form that appears.

The Databases page displays the existing databases on the MySQL server,
along with a form to create a new database.

FIGURE 3-3:
The results of

the Workbench
Create Database

Wizard.

498 BOOK 5 MySQL

2.	 Enter the name of the new database in the Database name text box.

3.	 Select the character set and collation from the Collation drop-down
menu.

If you want to use the server default values, just leave the drop-down box
empty.

4.	 Click the Create button to submit the SQL to create the database.

If the database creation was successful, phpMyAdmin automatically takes you to
the database interface web page, prompting you to create a new table in the data-
base, as shown in Figure 3-5.

Removing a database using phpMyAdmin is a little more complex than in Work-
bench. Here are the steps to remove an existing database:

1.	 Click the database you want to remove in the left-hand list of databases.

2.	 Click the Operations tab at the top of the database web page.

The database operations web page, shown in Figure 3-6, appears. On the
operations web page, you can rename the database, copy the database, create
tables in the database, and of course, remove the database.

FIGURE 3-4:
The phpMyAdmin

Databases page.

D
es

ig
ni

ng
 a

nd
 B

ui
ld

in
g

a
D

at
ab

as
e

CHAPTER 3 Designing and Building a Database 499

FIGURE 3-5:
The phpMyAdmin

database
web page.

FIGURE 3-6:
The phpMyAdmin

database
operations
web page.

500 BOOK 5 MySQL

3.	 Click the Drop the Database (DROP) link that appears on the right-hand
side of the page (in red font) to remove the database.

After you’ve created your application database, you can move onto the next step:
creating the tables to hold the application data.

Building Tables
In a relational database model, tables are what hold all the actual application data.
As mentioned at the start of this chapter, it’s important that you take time to plan
your table layout and structure before you try creating any tables.

Each data table definition must specify the individual data elements contained
in the table, along with all the properties for those data elements. That includes

»» The data field name

»» The data field data type

»» Any indexes required for the data field (such as the primary key)

»» Whether any foreign keys need to be defined for the table

»» Any data constraints required for the data field

All this information can make creating a table from the command line require a
lot of typing! Fortunately, the graphical tools available make the process a little
easier, but before you get to the easy stuff, let’s take a look at how to create tables
using the command line so you can learn the SQL format for the statements.

Working with tables using the
command-line interface
In the MySQL CLI, you use the CREATE TABLE statement to build a new table.
Here’s the basic format of the CREATE TABLE statement:

CREATE TABLE name (field1 datatype constraints, field2 datatype constraints...);

You must define each individual data field, specifying the data field name, data
type, and any data constraints applied to the data field. For tables with lots of data
fields, this can become quite a long statement!

D
es

ig
ni

ng
 a

nd
 B

ui
ld

in
g

a
D

at
ab

as
e

CHAPTER 3 Designing and Building a Database 501

Instead of trying to include all the information required to create a table in one
CREATE statement, database administrators often utilize the ALTER TABLE state-
ment. This statement alters the definition of an existing table, allowing you to
add, modify, or remove data fields, data field types, and of course, data field con-
straints. So, you can build a base definition of the table using the CREATE TABLE
statement and then add additional elements using ALTER TABLE statements.

The following sections go through the process of creating a table and adding addi-
tional elements to the base table.

Defining the base table
For the basic table definition, just define the table name and the individual data
fields and their required data types. For tables with lots of data fields, even just
this primary information can make for a long CREATE TABLE statement! To help
keep your sanity, you can use the command completion feature of the MySQL
CLI. Just press Enter in the middle of the statement, and you’ll get a prompt to
complete the statement. By default, the MySQL CLI won’t process the statement
until it sees a semicolon.

Follow these steps to create a simple base table:

1.	 Open the MySQL CLI and log into the MySQL server.

2.	 Use the dbtest1 database as the default database by entering the USE
command:

MariaDB [(none)]> use dbtest1;

Database changed

MariaDB [dbtest1]>

The CLI prompt shows the default database selected.

3.	 Enter the start of the CREATE TABLE statement defining the Employees
table, along with the opening parenthesis to start the data field
definition:

MariaDB [dbtest1]> CREATE TABLE employees (

 ->

The CLI prompt changes, indicating that it’s waiting for the completion of the
SQL statement.

4.	 Enter the individual data fields and their data types, with a comma at the
end of each line, and press Enter at the end of each data field entry; after

502 BOOK 5 MySQL

the last data field, add the closing parenthesis and the semicolon to
complete the statement:

 -> employeeid int,

 -> lastname varchar(50),

 -> firstname varchar(50),

 -> departmentcode char(5),

 -> startdate date,

 -> salary float);

Query OK, 0 rows affected (0.22 sec)

MariaDB [dbtest1]>

This creates the basic table defining the table name and the data fields but
omits any data constraints and indexes. You can double-check that the table
was created by using the SHOW TABLES statement:

MariaDB [dbtest1]> SHOW TABLES;

+-------------------+
| Tables_in_dbtest1 |

+-------------------+
| employees |

+-------------------+
1 row in set (0.00 sec)

MariaDB [dbtest1]>

If you’d like to see the data fields contained in the table, use the SHOW CREATE
TABLE statement:

MariaDB [dbtest1]> SHOW CREATE TABLE employees;

+-----------+--------------------------------+
| Table | Create Table |

+-----------+--------------------------------+
| employees | CREATE TABLE `employees` (

 `employeeid` int(11) DEFAULT NULL,

 `lastname` varchar(50) DEFAULT NULL,

 `firstname` varchar(50) DEFAULT NULL,

 `departmentcode` char(5) DEFAULT NULL,

 `startdate` date DEFAULT NULL,

 `salary` float DEFAULT NULL

) ENGINE=InnoDB DEFAULT CHARSET=latin1 |

+-----------+-------------------------------+
1 row in set (0.00 sec)

MariaDB [dbtest1]>

D
es

ig
ni

ng
 a

nd
 B

ui
ld

in
g

a
D

at
ab

as
e

CHAPTER 3 Designing and Building a Database 503

Now that the basic table exists, you can add any required data constraints and
indexes.

Adding more table features
After you create a table, you can add, modify, or remove data fields using the
ALTER TABLE statement. Here’s the format of the ALTER TABLE statement:

ALTER TABLE tablename action

The action parameter can be one or more SQL commands used to modify the table.
MySQL defines lots of actions that you can take on an existing table. Table 3-1 lists
and describes the more common commands that you’ll probably want to use.

As you can tell from Table 3-1, there are lots of changes you can make to an exist-
ing table in MySQL using the ALTER TABLE statement! Follow these steps to try
out a few of them:

1.	 Open the MySQL CLI and log in using the root user account.

2.	 Use the dbtest1 database as the default by entering the USE command:

MariaDB [(none)]> use dbtest1;

Database changed

MariaDB [dbtest1]>

TABLE 3-1	 ALTER TABLE Actions
Action Description

ADD COLUMN name Add a new column (data field) to the table.

DROP COLUMN name Remove an existing column from the table.

ALTER COLUMN name
MODIFY action

Change the definition of an existing column based
on the specified action.

ADD constraint Add a new data constraint to the table.

DROP constraint Remove an existing data constraint from the table.

RENAME COLUMN old TO new Change the name of a table column.

RENAME TO new Change the table name.

504 BOOK 5 MySQL

3.	 Submit an ALTER TABLE statement to add the primary key data con-
straint to the employeeid data field:

MariaDB [dbtest1]> ALTER TABLE employees add primary key (employeeid);

Query OK, 0 rows affected (0.57 sec)

Records: 0 Duplicates: 0 Warnings: 0

MariaDB [dbtest1]>

4.	 Submit an ALTER TABLE statement to add the NOT NULL data constraint
to the lastname data field:

MariaDB [dbtest1]> ALTER TABLE employees MODIFY lastname varchar(50) NOT

NULL;

Query OK, 0 rows affected (0.58 sec)

Records: 0 Duplicates: 0 Warnings: 0

MariaDB [dbtest1]>

5.	 Enter an ALTER TABLE statement to add a new data field named
birthdate, using the date data type:

MariaDB [dbtest1]> ALTER TABLE employees ADD COLUMN birthdate date;

Query OK, 0 rows affected (0.30 sec)

Records: 0 Duplicates: 0 Warnings: 0

MariaDB [dbtest1]>

To make sure the table changes actually took effect, use the SHOW CREATE TABLE
statement again:

MariaDB [dbtest1]> SHOW CREATE TABLE employees;

+-----------+--------------------------------+
| Table | Create Table

 |

+-----------+--------------------------------+
| employees | CREATE TABLE `employees` (

 `employeeid` int(11) NOT NULL,

 `lastname` varchar(50) NOT NULL,

 `firstname` varchar(50) DEFAULT NULL,

 `departmentcode` char(5) DEFAULT NULL,

 `startdate` date DEFAULT NULL,

 `salary` float DEFAULT NULL,

 `birthdate` date DEFAULT NULL,

D
es

ig
ni

ng
 a

nd
 B

ui
ld

in
g

a
D

at
ab

as
e

CHAPTER 3 Designing and Building a Database 505

 PRIMARY KEY (`employeeid`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1 |

+-----------+-------------------------------+
1 row in set (0.00 sec)

MariaDB [dbtest1]>

The table definition now shows the updates made to the table — the primary key
assigned to the employeeid data field, the new NOT NULL constraint for the last-
name data field, and the new birthdate data field.

Removing a table using the MySQL CLI requires that you use the DROP TABLE
statement:

DROP TABLE employees;

The DROP statement removes the entire table structure. If you just need to remove
data records, use the DELETE statement instead.

Working with tables using Workbench
The graphical environment in Workbench makes creating tables much simpler
than the MySQL CLI environment. As you would expect, it’s just a matter of filling
in a form!

Here are the steps to create a table using the MySQL Workbench tool:

1.	 Click the arrow icon next to the dbtest2 database entry in the Schemas
section of the Navigator pane.

2.	 Right-click the Tables menu item, and select Create Table.

The New Table form appears, as shown in Figure 3-7.

3.	 Enter the table name of employees in the Table Name text box.

4.	 Click in the text area that shows the Column Name field.

An empty text box appears for the Column Name and Datatype.

5.	 Enter employeeid for the Column Name, and select INT from the
Datatype drop-down box.

Notice that Workbench automatically selects the Primary Key and Not Null
constraint check boxes in the form for the first data field you enter. Keep those
checked.

506 BOOK 5 MySQL

6.	Click the empty line under the employeeid data field in the form.

A new data field name of employeescol appears.

7.	Double-click the new employeescol name to change it to lastname.

A default data type of varchar(45) appears in the DataType column.

8.	Change varchar(45) to varchar(50).

9.	Check the Not Null check box in the form.

10.	Repeat steps 4 through 9 to add the remainder of the table data fields:

lastname varchar(50) Not Null

firstname varchar(50)

departmentcode char(5)

startdate date

birthdate date

salary float

When you complete the form, it should look like what’s shown in Figure 3-8.

FIGURE 3-7:
Creating a new

table using
Workbench.

D
es

ig
ni

ng
 a

nd
 B

ui
ld

in
g

a
D

at
ab

as
e

CHAPTER 3 Designing and Building a Database 507

11.	Click Apply.

A wizard appears, showing the SQL code generated from the information you
entered into the form, as shown in Figure 3-9.

Notice that the CREATE TABLE statement generated by Workbench to create
the table looks just like what you did manually using the MySQL CLI.

FIGURE 3-8:
The completed

New Table
form for the

Employees
table.

FIGURE 3-9:
The CREATE

TABLE statement
generated by

Workbench.

508 BOOK 5 MySQL

12.	Click Apply to submit the SQL statement to create the table.

The status of the submitted SQL statement appears.

13.	Click the Finish button to close out the wizard.

When you return to the main Workbench interface, click the arrow next to the
Tables entry under the dbtest2 database. You should now see the new Employees
table added, as shown in Figure 3-10.

From here you can modify any of the data field names, data types, or data con-
straints. You can remove the table by right-clicking on the table name and then
selecting the Drop Table entry from the pop-up menu.

Working with tables in phpMyAdmin
phpMyAdmin also provides a pretty fancy graphical interface for creating your
tables. Follow these steps to create a new table using phpMyAdmin:

1.	 After you open the phpMyAdmin web page in your browser, click the
dbtest3 database entry from the database list on the left-hand side of
the main page.

This takes you to the database structure page, shown in Figure 3-11.

FIGURE 3-10:
Viewing the
Employees

table created
in the dbtest2

database.

D
es

ig
ni

ng
 a

nd
 B

ui
ld

in
g

a
D

at
ab

as
e

CHAPTER 3 Designing and Building a Database 509

2.	 Enter employees in the Name text box.

3.	 Change the number of columns to 7.

4.	 Click Go.

This produces the table data field form, shown in Figure 3-12.

5.	 Fill in the top form field with the employeeid data field information.

6.	 Click the Index drop-down box and select PRIMARY.

A pop-up window appears, prompting you for additional information on the
index key, as shown in Figure 3-13.

7.	 Click Go to accept the default values.

Be careful with the NOT NULL data constraint when using phpMyAdmin. Notice
that it provides a Null check box. If you select the check box, that means the
data field can have a Null value. Keep the check box empty to apply the NOT
NULL data constraint.

FIGURE 3-11:
The database

structure page in
phpMyAdmin.

510 BOOK 5 MySQL

8.	Complete the form for the rest of the Employees table fields, as shown in
Figure 3-14.

9.	If you’d like to see the SQL CREATE TABLE statement that the form
information would generate ahead of time, click the Preview SQL button
at the bottom of the form page.

10.	Click the Save button to create the table.

After phpMyAdmin submits the SQL to create the table, it automatically redirects
you to the structure page for the new table, as shown in Figure 3-15.

FIGURE 3-13:
The Index

dialog box in
phpMyAdmin.

FIGURE 3-12:
The empty new

table form in
phpMyAdmin.

D
es

ig
ni

ng
 a

nd
 B

ui
ld

in
g

a
D

at
ab

as
e

CHAPTER 3 Designing and Building a Database 511

The table structure page is a very busy web page! It shows the data fields for the
table, along with a series of action icons for each data field. From here, you can
change any of the data field properties, along with adding a new data field or
removing an existing data field.

FIGURE 3-14:
The completed

new table form in
phpMyAdmin.

FIGURE 3-15:
The phpMyAdmin

table structure
page.

512 BOOK 5 MySQL

If you click the dbtest3 database link on the left side of the web page, phpMyAdmin
will take you back to the database Structure page. This time, because you have an
existing table in the database, the Structure page shows the table, along with
some action icons, as shown in Figure 3-16.

From here you can remove the table by clicking the Drop link or delete the data
from the table by clicking the Empty link. To get back to the table structure page
to view the data fields, click the Structure link.

FIGURE 3-16:
The phpMyAdmin

database
structure

page with an
existing table.

CHAPTER 4 Using the Database 513

Using the Database

The preceding chapter covers how to create databases and tables for your
dynamic web application. That’s all well and good, but databases and tables
don’t really do anything until you start placing data in them.

This chapter explores the different methods you have available for adding, chang-
ing, and removing data in your application tables. After that, it walks through
possibly the most important feature of any database: how to quickly retrieve the
data that your application needs. The chapter closes by discussing the important
jobs of backing up and restoring database data.

Working with Data
The ability to easily manage application data is the whole reason dynamic web
applications use databases. So it stands to reason that the SQL language has quite
a few options for working with data. There are four basic functions that we need
to do with the data in our application:

»» Add new data records to tables.

»» Modify existing data records in tables.

»» Remove unwanted data records from tables.

»» Query existing data for specific information.

Chapter 4

IN THIS CHAPTER

»» Adding new data to your tables

»» Updating existing data in your tables

»» Finding data quickly

»» Working with backups and restores

514 BOOK 5 MySQL

This section walks through how to accomplish the first three items in this list
using the three different MySQL interfaces I cover earlier in this minibook — the
MySQL command-line interface (CLI), the graphical MySQL Workbench tool, and
the web-based phpMyAdmin tool. Querying data is a complex topic, so I save that
for its own section. Let’s get started and look at managing the data in your tables.

The MySQL command-line interface
The MySQL CLI uses standard SQL statements to interact with the MySQL server.
There are just three basic SQL statements that you need to know to manage data
in your database tables:

»» INSERT: To add new data records to a table

»» UPDATE: To modify existing data records in a table

»» DELETE: To remove existing data records from a table

The following sections describe these three statements and show how to use them
in your application.

Adding new data
You use the INSERT SQL statement to add one or more new data records to a table
in the database. A data record consists of a single instance of data values for each
data field.

In some MySQL documentation, you’ll often see the terms column used to refer to
a single data field and tuple used to refer to an entire data record. I’ll use the more
generic terms data field and data record in this book.

Here’s the basic format of the INSERT statement:

INSERT INTO table [(fieldlist)] VALUES (valuelist)

The fieldlist parameter is optional. By default, the INSERT statement tries to
load comma-separated values from the valuelist into each data field in the
table, in the order the data fields appear in the table definition. Chapter 3 of this
minibook explains how can you use the SHOW CREATE TABLE statement to list the
data fields in the table. Another method is to use the DESCRIBE SQL statement:

MariaDB [dbtest1]> DESCRIBE employees;

+----------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |

U
si

ng
 t

he
 D

at
ab

as
e

CHAPTER 4 Using the Database 515

+----------------+-------------+------+-----+---------+-------+
| employeeid | int(11) | NO | PRI | NULL | |

| lastname | varchar(50) | NO | | NULL | |

| firstname | varchar(50) | YES | | NULL | |

| departmentcode | char(5) | YES | | NULL | |

| startdate | date | YES | | NULL | |

| salary | float | YES | | NULL | |

| birthdate | date | YES | | NULL | |

+----------------+-------------+------+-----+---------+-------+
7 rows in set (0.01 sec)

MariaDB [dbtest1]>

It doesn’t show the exact SQL statement used to create the table, but it produces a
quick summary of the data fields contained in the table. That’s all you need to see
what order the data fields appear in the table for the INSERT statement.

Follow these steps to enter a data record into the employees table that you created
back in Chapter 3 of this minibook. (If you skipped that part, or haven’t read it yet,
just jump back there and run the CREATE statements to do that. I’ll wait.)

1.	 Ensure that the MySQL server is started, and then open the MySQL CLI
program.

2.	 Log in as the root user account.

3.	 Specify the dbtest1 database from Chapter 3 as the default database by
entering the USE statement:

MariaDB [(none)]> USE dbtest1;

Database changed

MariaDB [dbtest1]>

4.	 Add a new data record by entering the INSERT statement:

MariaDB [dbtest1]> INSERT INTO employees VALUES

 -> (123, 'Blum', 'Rich', 5, '2020-01-01', 10000, '2000-05-01');

Query OK, 1 row affected (0.12 sec)

MariaDB [dbtest1]>

In the INSERT statement, text and date values must be enclosed in quotes to
delineate the start and end of the text value. Numeric values don’t need to use
quotes. Notice that I split the INSERT statement into two parts here. That’s not
necessary, but it can come in handy when you don’t want too long of a line for
the INSERT statement.

516 BOOK 5 MySQL

The INSERT statement returns a status message indicating how many data
record rows were successfully added to the table. (If you need to, you can
specify more than one group of data values in the valuelist, surrounding
each with the parentheses.)

5.	 Check to ensure the data was added correctly by using the SELECT
statement:

MariaDB [dbtest1]> SELECT * FROM employees;

+------------+----------+-----------+-------+------------+--------+-------
-----+

| employeeid | lastname | firstname | dcode | startdate | salary |

birthdate |

+------------+----------+-----------+-------+------------+--------+-------
-----+

| 123 | Blum | Rich | 5 | 2020-01-01 | 10000 |

2000-05-01 |

+------------+----------+-----------+-------+------------+--------+-------
-----+

1 row in set (0.00 sec)

MariaDB [dbtest1]>

The SELECT statement shows the data fields in the table (I truncated the
departmentcode data field name in this output so it would fit the width of the
book page), and then shows the data records contained in the table.

If you don’t want to assign values to all the data fields in the data record, you must
include the fieldlist parameter. This specifies the data fields (and the order)
that the data values will be placed in:

MariaDB [dbtest1]> INSERT INTO employees (employeeid, lastname, firstname)

 -> VALUES (124, 'Blum', 'Barbara');

Query OK, 1 row affected (0.10 sec)

MariaDB [dbtest1]>

Be careful when skipping data fields when adding a new data record. If a data field
that uses the NOT NULL data constraint isn’t assigned a data value, the server may
reject the INSERT statement. I say “may” because it depends on the configuration
of the MySQL server. To maintain backward compatibility with older versions of
MySQL, by default MySQL won’t enforce some data constraints, such as the NOT
NULL constraint by default. To enforce it, you must change the sql_mode setting,
either in the MySQL server configuration, or by setting it in the MySQL connection
session. The sql_mode setting value of STRICT_ALL_TABLES tells MySQL to enforce

U
si

ng
 t

he
 D

at
ab

as
e

CHAPTER 4 Using the Database 517

all data constraints on all tables. When you do that, you’ll get an error message
if you don’t supply a value for any data field that uses the NOT NULL constraint:

MariaDB [dbtest1]> set sql_mode=STRICT_ALL_TABLES;

Query OK, 0 rows affected (0.00 sec)

MariaDB [dbtest1]> INSERT INTO employees (employeeid, firstname) VALUES

 -> (126, 'Katie');

ERROR 1364 (HY000): Field 'lastname' doesn't have a default value

MariaDB [dbtest1]>

Modifying existing data
If you need to change data that you’ve already entered into the table, don’t
worry — all is not lost. You can modify any existing data records in the table, as
long as the privileges assigned to your MySQL user account contains the UPDATE
privilege.

You use the UPDATE SQL statement for updating one or more data records con-
tained in the table. The UPDATE statement is another of those SQL statements that,
though simple in concept, can easily get complex. Here’s the basic format for the
UPDATE statement:

UPDATE table SET datafield = value [WHERE condition]

The basic format of this statement specifies a datafield in the table to change
the data value of that data field to the value specified. The WHERE clause specifies
the condition that a data record must meet to have the change applied to it. How-
ever, notice that it’s optional, which can cause lots of problems.

Here’s the way the scenario often plays out: Suppose you need to go back into
the Employees table to change the NULL startdate value for Barbara that wasn’t
supplied when the data record was created. If you just use the basic format for the
UPDATE statement, you’ll get a surprise:

MariaDB [dbtest1]> UPDATE employees SET startdate = '2020-01-02';

Query OK, 2 rows affected (0.10 sec)

Rows matched: 2 Changed: 2 Warnings: 0

MariaDB [dbtest1]>

Your first clue that something bad happened would be the output returned from
the MySQL server. The Rows matched and the Changed fields indicate that two

518 BOOK 5 MySQL

data records were updated — but you just wanted to change one data record. Run-
ning a SELECT statement will verify your mistake:

MariaDB [dbtest1]> select * From employees;

+------------+----------+-----------+-------+------------+--------+-----------+
| employeeid | lastname | firstname | dcode | startdate | salary | birthdate |

+------------+----------+-----------+-------+------------+--------+-----------+
| 123 | Blum | Rich | 5 | 2020-01-02 | 10000 | 2000-05-01|

| 124 | Blum | Barbara | NULL | 2020-01-02 | NULL | NULL |

+------------+----------+-----------+-------+------------+--------+-----------+
2 rows in set (0.00 sec)

MariaDB [dbtest1]>

The basic UPDATE statement changed the startdate data field value for all of the
data records in the table! This is an all-too-common mistake made by even the
most experienced database administrators and programmers when in a hurry. By
default, MySQL applies the update to all the table data records.

To solve that problem, you just need to add the WHERE clause to specify exactly
which data record(s) you intend the change to apply to:

UPDATE employees SET startdate = '2020-01-01' WHERE employeeid = 123;

It’s a good practice to get in the habit of always including a WHERE clause in your
UPDATE statements, even if you really do want the update to apply to all the data
records. That way, you know the update will always be applied to the correct data
records and avoid costly mistakes.

Deleting existing data
The DELETE statement allows you to remove data from a table but keep the actual
table intact (unlike the DROP statement, which removes the table and the data).
Here’s the format for the DELETE statement:

DELETE FROM table [WHERE condition]

This statement works similar to the UPDATE statement. Any data records match-
ing the condition listed in the WHERE clause are deleted. And just like the UPDATE
statement, if you leave off the WHERE clause, the DELETE function applies to all the
data in the table. Make sure you really mean that before using it!

U
si

ng
 t

he
 D

at
ab

as
e

CHAPTER 4 Using the Database 519

Here are a couple of examples of using the DELETE statement:

MariaDB [dbtest1]> DELETE FROM employees WHERE employeeid = 124;

Query OK, 1 row affected (0.08 sec)

MariaDB [dbtest1]> DELETE FROM employees WHERE employeeid = 124;

Query OK, 0 rows affected (0.00 sec)

MariaDB [dbtest1]>

In the second example, I tried to delete a data record that I had already deleted.
Notice that when the DELETE statement fails to find any data records to delete, it
does not produce an error message; instead, it just indicates in the return status
that the number of data records deleted was zero.

The MySQL Workbench tool
Thanks to its graphical interface, working with table data using MySQL Work-
bench is a breeze. You don’t need to memorize any SQL statements — just fill out
a form and apply it to the database. Much like ordering a pizza!

Follow these steps to experiment with the data management features in
Workbench:

1.	 Ensure that the MySQL database server is running, and then open the
MySQL Workbench tool.

2.	 Double-click the dbtest2 database link in the Navigator pane, under the
Schemas section.

3.	 Double-click the Tables link under the dbtest2 link.

4.	 Hover the mouse pointer over the Employees table entry.

Three icons appear:

•	 An i icon, which displays information about the table

•	 A wrench icon, which allows you to modify the table structure

•	 A spreadsheet table icon, which allows you to manage data in the table

5.	 Click the spreadsheet table icon next to the Employees table entry.

The Result Grid pane appears under the Query1 pane, as shown in Figure 4-1.

The Result Grid pane shows the existing table data (if any) in a grid layout. Each
row in the grid is a data record in the table.

520 BOOK 5 MySQL

Depending on the size of the Workbench window, the Result Grid area may
be truncated on the right-hand side. If that happens, grab the margin line at
the right-hand edge of the Result Grid area and drag it to the right to expand
the pane.

6.	To enter a new data record, either double-click in the empty grid row at
the bottom of the table or, if your grid is very long, click the Insert Row
icon at the top of the grid to jump to the empty grid row.

7.	To modify an existing single data value in a data record, single-click the
value in the grid and replace the existing value with the new value.

8.	To remove an existing data record, highlight the grid row by clicking the
empty cell at the left-hand side of the row, and then click the Delete
selected rows icon at the top of the Result Grid pane.

9.	To apply the changes to the table, click the Apply button at the bottom of
the pane.

The Apply SQL Wizard appears, as shown in Figure 4-2.

The wizard shows the SQL statements generated to add, modify, or delete the
data records based on the changes you made in the data grid.

10.	Click the Apply button to apply the SQL statements to the table.

11.	Click the Finish button to close the wizard.

FIGURE 4-1:
The Workbench

Result Grid
for displaying

table data.

U
si

ng
 t

he
 D

at
ab

as
e

CHAPTER 4 Using the Database 521

The Result Grid can be a bit misleading. Just making the changes in the grid display
doesn’t commit them to the table. You have to click the Apply button to run the
wizard to commit the changes, or else they’ll be gone when you close out the grid!

If you feel a bit restricted by the small area of the result grid, click the Form Editor
button on the right-hand side of the pane. That displays a single data record in the
table using a form format, as shown in Figure 4-3.

FIGURE 4-2:
The Apply

SQL Wizard in
Workbench.

FIGURE 4-3:
Using the

Form Editor in
Workbench to
manage data

records.

522 BOOK 5 MySQL

The Form Editor does the same thing as the Result Grid but provides a single data
record interface, giving you more room for viewing long data fields. Again, if you
make any changes in the Form Editor, make sure to click the Apply button at the
bottom to commit the changes.

Making changes to data in a table doesn’t get any easier than that!

The phpMyAdmin tool
The phpMyAdmin web-based tool also provides a graphical interface for working
with your table data, but it’s a little more complicated than Workbench. Instead
of using a single interface for all data management, phpMyAdmin breaks them up
into a couple of different interfaces.

Follow these steps to insert new data using phpMyAdmin:

1.	 Ensure that the MySQL server is running, and then open your browser
and go to the phpMyAdmin URL for your system.

For XAMPP it’s http://localhost:8080/phpmyadmin/. Note that the TCP
port may be different for your server environment.

2.	 Click the dbtest3 database link on the left-hand side of the main phpMy-
Admin web page.

This produces the Database web page, as shown in Figure 4-4.

FIGURE 4-4:
The phpMyAdmin

Database
web page.

U
si

ng
 t

he
 D

at
ab

as
e

CHAPTER 4 Using the Database 523

3.	 To add a new data record, click the Insert link in the Actions section.

This produces a form to insert one or two new data records, as shown in
Figure 4-5.

4.	 Enter data values in the appropriate data fields, and then click the Go
button to add the data record.

When you click the Go button, phpMyAdmin generates the INSERT statement
and submits the data record to the table. It then takes you back to the
Database web page, showing the status for the completed statement.

Managing existing data in a table uses a different interface in phpMyAdmin.
Follow these steps to manage the existing data records in the table:

1.	 Open your browser and enter the following phpMyAdmin URL:

http://localhost:8080/phpmyadmin/

2.	 Click the dbtest3 database link on the left-hand side of the main
phpMyAdmin web page.

3.	 Click the Browse icon in the employee table actions section of the
Database web page.

This produces a list of all the data records contained in the table, as shown in
Figure 4-6.

FIGURE 4-5:
The INSERT form
in phpMyAdmin.

524 BOOK 5 MySQL

4.	 Click the Edit icon for the data record you need to modify or the Delete
icon for the data record you need to delete.

To delete multiple data records, select the check boxes for those data records,
and then click the Delete icon at the bottom of the data record list.

5.	 Click the Go button to confirm editing or deleting the selected data
record.

Thanks to the graphical interface in phpMyAdmin, entering and managing data
is still a simple process. However, finding specific data records in an application
can be somewhat tricky, even when using a graphical interface. The next section
tackles that topic.

Searching for Data
Quite possibly the most important function you’ll perform in your dynamic web
applications is to query existing data in the database. Many web developers spend
a great deal of time concentrating on the design layout of the web pages, but the
real heart of the application is the behind-the-scenes SQL used to query data to
produce the website content. If this code is inefficient, it can cause huge perfor-
mance problems, and possibly even make the web application virtually useless to
customers — no matter how fancy the web pages look.

FIGURE 4-6:
The phpMyAdmin

window for
browsing data

records.

U
si

ng
 t

he
 D

at
ab

as
e

CHAPTER 4 Using the Database 525

As a good database application developer, it’s essential that you understand
how to write good SQL query statements. The SQL statement used for queries
is SELECT. Because of its importance, a lot of work has been done on the format
of the SELECT statement, to make it as versatile as possible. Unfortunately, with
versatility comes complexity.

Because of the versatility of the SELECT statement, the statement format has
become somewhat unwieldy and intimidating for the beginner. To try and keep
things simple, in this section I walk through the different features of the SELECT
statement one piece at a time. The next few sections demonstrate how to use these
features of the SELECT statement.

The basic SELECT format
The basic format for the SELECT statement seems simple enough:

SELECT fieldlist FROM table

The fieldlist parameter specifies the data fields that should appear in the out-
put from the table you specify. The fieldlist can be a comma-separated list of
specific data fields in the table, or the wildcard character (the asterisk) to specify
all data fields, as shown in the SELECT example I use earlier in this chapter:

SELECT * FROM employees;

This statement returns all the data field values for all the data records contained
in the Employees table. If that’s all you need for your application, you don’t need
to know anything more about the SELECT statement (lucky you)!

However, more than likely, you’ll need to customize just what data fields (and
data records) need to appear in the output. That’s where things start getting com-
plicated. The following sections show some more features that you may need to
use in your SELECT statements.

Sorting output data
The output from a SELECT statement is called a result set. The result set contains
only the data fields specified in the SELECT statement. The result set is only tem-
porary and, by default, is not stored in any tables in the database.

By default, the data records displayed in the result set are not displayed in any
particular order. As records are added or removed from the table, MySQL may
place new data records anywhere within the table order. Even if you enter data
in a particular order using INSERT statements, there is still no guarantee that the
records will display in the same order in the result set.

526 BOOK 5 MySQL

If you need to specify the order in which the data records appear in your output,
you must add the ORDER BY clause to the SELECT statement:

> SELECT employeeid, lastname, firstname FROM employees ORDER BY firstname;

+------------+----------+-----------+
| employeeid | lastname | firstname |

+------------+----------+-----------+
| 124 | Blum | Barbara |

| 126 | Blum | Jessica |

| 125 | Blum | Katie |

| 123 | Blum | Rich |

+------------+----------+-----------+
4 rows in set (0.00 sec)

>

In this example, only the data fields specified in the SELECT statement are dis-
played, ordered by the firstname data field. The default order used by the ORDER
BY clause is ascending order, based on the data type and collation you select when
creating the table. You can change the order to descending by adding the DESC
keyword at the end of the ORDER BY clause:

ORDER BY firstname DESC;

This gives you complete control over how the data records appear in the result set
output.

Filtering output data
By default, the SELECT statement places all the data records in the table in the
result set output. The power of the database query comes from displaying only a
subset of the data that meets a specific condition.

You add the WHERE clause to the SELECT statement to determine which data records
to display in the result set output. Now we’re getting to the heart of the SELECT
statement!

For example, you can check for all the employees who work in the department
identified by departmentcode 5 by using the following query:

MariaDB [dbtest1]> SELECT * FROM employees WHERE departmentcode = 5;

+----+-------+-------+----------------+------------+--------+------------+
| id | lname | fname | departmentcode | startdate | salary | birthdate |

+----+-------+-------+----------------+------------+--------+------------+
| 123| Blum | Rich | 5 | 2020-01-02 | 10000 | 2000-05-01 |

U
si

ng
 t

he
 D

at
ab

as
e

CHAPTER 4 Using the Database 527

| 125| Blum | Katie | 5 | 2020-02-25 | 14000 | 2004-01-01 |

+----+-------+-------+----------------+------------+--------+------------+
2 rows in set (0.00 sec)

MariaDB [dbtest1]>

The result set only contains the data records from the table that match the WHERE
clause condition you specified. In this example, the data field was an integer type,
but if the data field you use is a text or date value, you must place quotes around
the value to delineate the start and end of the value:

SELECT * FROM employees WHERE startdate < "2020-03-01";

In the WHERE clause condition, the collation you define for the data field is impor-
tant. MySQL evaluates the specified condition based on the collation defined. If
you use a case-insensitive collation, MySQL can’t tell the difference between the
values Rich and rich. Be very careful in selecting the collation you use for tables,
because that plays an important role in just how your application can handle the
data contained in the tables.

More advanced queries
Now that you’ve seen the basics (and the power) of the SELECT statement, let’s
dive into some more complex topics. The following sections help add to your
SELECT querying skills by showing you how to do some pretty complex searches
in your database!

Querying from multiple tables
In a relational database, data is split into several tables in an attempt to keep data
duplication to a minimum. In Chapter 3 of this minibook, I show you how to apply
the second normal form rule of database design to create separate Customers and
Orders tables so that the customer information didn’t need to be duplicated for
every order data record. Although this helps reduce data redundancy, it produces
a small problem for your application queries.

When your application needs to generate a report for an order, it most likely will
need the customer’s address information to place on the report. That means now
your program needs to retrieve the order information from the Orders table, and
the customer information from the Customers table.

528 BOOK 5 MySQL

You can do that with two separate queries:

1.	 Query the Orders table with the orderid value to retrieve the customerid.

2.	 Query the Customers table with the customerid to retrieve the customer
address information for that order.

However, the two separate queries do take some extra processing time, both
in your PHP application code and in the MySQL server. A more efficient way of
retrieving that information is to submit a single SELECT statement that retrieves
the data from both tables.

To query data from multiple tables in a single SELECT statement, you must specify
both tables in the FROM clause. Also, because you’re referencing data fields from
both tables in the data field list, you must indicate which table each data field
comes from. That looks like this:

MariaDB [dbtest1]> SELECT orders.orderid, customers.name, customers.address

 -> FROM orders, customers

 -> WHERE orderid = 1000 AND orders.customerid = customers.customerid;

+---------+------------+-------------------------+
| orderid | name | address |

+---------+------------+-------------------------+
| 1000 | Acme Paper | 134 Main St.; Miami, FL |

+---------+------------+-------------------------+
1 row in set (0.00 sec)

MariaDB [dbtest1]>

As you can see from this example, it doesn’t take long for a seemingly simple
SELECT statement to get complex! Let’s walk through just what this statement
does.

The first line in the query defines the data fields you want to see in the result set
output. Because you’re using data fields from two tables, you must precede each
data field name with the table it comes from.

In the second line, you have to define which tables the data fields come from in the
FROM clause. You can list the tables in any order here.

Finally, in the WHERE clause, you have to define the condition that filters out the
records you want to display. In this example, there are two conditions that must
be met:

U
si

ng
 t

he
 D

at
ab

as
e

CHAPTER 4 Using the Database 529

»» You need the Orders table data record that meets the specific orderid value
you’re looking for.

»» You need the Customers table data record that matches the customerid
value for that specific order.

You use the logical AND operator to combine the two conditions. The result set
contains the data record values that meets both of those conditions.

Using joins
In the previous example, you had to write a lot of code in the WHERE clause to
match the appropriate data record from the Customers table to the Orders table
data record information. In a relational database, this is a common thing to do. To
help programmers, the SQL designers came up with an alternative way to perform
this function.

A database join matches related data records in relational database tables without
your having to perform all the associated checks in your code. Here’s the format
for using the join in a SELECT statement:

SELECT fieldlist FROM table1 jointtype JOIN table2 ON condition

The fieldlist parameter lists the data fields from the tables to display in the
output as usual. The table1 and table2 parameters define the two tables to per-
form the join on. The jointype parameter determines the type of join for MySQL
to perform. There are three types of joins available in MySQL:

»» INNER JOIN: Only displays data records found in both tables.

»» LEFT JOIN: Displays all records in table1 and the matching data records in
table2.

»» RIGHT JOIN: Displays all records in table2 and the matching data records in
table1.

The LEFT and RIGHT join types are also commonly referred to as outer joins. The
order in which you specify the tables and the join type that you use are very
important to the join operation.

Finally, the ON condition clause defines the data field relation to use for the join
operation.

It’s common practice to use the same data field name for data fields in sepa-
rate tables that contain the same information (such as the customerid data field

530 BOOK 5 MySQL

in the Customers and Orders tables). You can add the NATURAL keyword before
the join type to tell MySQL to join using the common data field name. Here’s an
example of querying the customer information for all the orders using a NATURAL
INNER JOIN:

MariaDB [dbtest1]> SELECT orders.orderid, customers.name, customers.address

 -> FROM orders NATURAL INNER JOIN customers;

+---------+---------------+------------------------------+
| orderid | name | address |

+---------+---------------+------------------------------+
| 1000 | Acme Paper | 134 Main St.; Miami, FL |

| 1001 | Acme Paper | 134 Main St.; Miami, FL |

| 1002 | Acme Machines | 264 Oak St.; Los Angeles, CA |

+---------+---------------+------------------------------+
3 rows in set (0.00 sec)

MariaDB [dbtest1]>

Now that’s a lot less typing to mess with! The result set shows all the data records
in the Orders table that have matching customerid data records in the Customers
table.

Another way of doing this is to add the USING clause to a JOIN statement:

MariaDB [dbtest1]> SELECT orders.orderid, customers.name, customers.address

 -> FROM orders LEFT JOIN customers USING (customerid);

+---------+---------------+------------------------------+
| orderid | name | address |

+---------+---------------+------------------------------+
| 1000 | Acme Paper | 134 Main St.; Miami, FL |

| 1001 | Acme Paper | 134 Main St.; Miami, FL |

| 1002 | Acme Machines | 264 Oak St.; Los Angeles, CA |

+---------+---------------+------------------------------+
3 rows in set (0.00 sec)

MariaDB [dbtest1]>

The USING keyword works with the LEFT and RIGHT joins to specify the data field
for the join operation.

Using joins the wrong way can cause severe performance issues on your MySQL
server, especially when working with large amounts of data (joining all the
data records in tables with millions of data records can take quite a long time).
I strongly suggest testing out your SELECT statements first before coding them
into your web application. That will help give you a feel for any performance
issues that may occur. In some situations, it’s better to submit multiple smaller
SELECT statements than to submit a single complex SELECT statement.

U
si

ng
 t

he
 D

at
ab

as
e

CHAPTER 4 Using the Database 531

Using aliases
Having to specify the table and data field names in SELECT statements can get
somewhat cumbersome. To help out, you can use the table alias feature, which
defines a name that represents the full table name within the SELECT statement.
Here’s the format for using aliases:

SELECT fieldlist FROM table AS alias

When you define an alias for a table, you can use the alias anywhere within the
SELECT statement to reference the full table name. This is especially handy in the
long WHERE clauses when you’re working with multiple tables:

MariaDB [dbtest1]> SELECT t1.orderid, t2.name, t2.address

 -> FROM orders as t1, customers as t2

 -> WHERE t1.orderid = 1000 AND t1.customerid = t2.customerid;

+---------+------------+-------------------------+
| orderid | name | address |

+---------+------------+-------------------------+
| 1000 | Acme Paper | 134 Main St.; Miami, FL |

+---------+------------+-------------------------+
1 row in set (0.00 sec)

MariaDB [dbtest1]>

The t1 alias represents the Orders table, and the t2 alias represents the Customers
table. Notice that you can use the aliases anywhere in the SELECT statement, even
in the data field list!

Playing It Safe with Data
You’ve worked hard managing the data contained in the database (or at least your
application has!). It would be a tragedy if something happened that corrupted
the database so that you couldn’t access that data. You never know when a cata-
strophic event will occur in the computer world, so it’s always a good idea to have
a duplicate copy of your data handy at all times.

The MySQL server provides a few different methods for backing up and restoring
database data. This section walks through how to back up and restore database
data in the MySQL server environments.

532 BOOK 5 MySQL

Performing data backups
When backing up a MySQL database server, you have a few different options
available:

»» Copy the physical files the MySQL server uses to store data and database
information.

»» Use MySQL utilities to extract database and table structure information.

»» Use MySQL utilities to extract table data.

»» Use MySQL utilities to extract both the table structure and data.

If you choose to copy the physical file structure of the MySQL server, you’ll need
to be careful. MySQL uses file locking to protect data as the server is running, so
you may not be able to copy all the files required for the server operation at any
given time.

Before you try to manually copy the MySQL server files, it’s best to stop the MySQL
server process from running to ensure all the data files are available and that you
can safely copy them. This is called a cold backup.

In a cold backup, because you’ve stopped the MySQL server, web applications
can’t access the application data, so your website users won’t be able to properly
interact with your application. If your application has certain downtimes where
website visitors won’t use it (such as outside of business hours), this is fine, but
for most web applications, your website visitors need access 24 hours a day, seven
days a week! In those situations a cold backup just won’t work.

The alternative is to perform a hot backup, which copies database information
while the MySQL server is running and the web applications are still in use.
Because the server is still running, the backup process can’t lock the data tables,
so the MySQL server can still process SQL statements, altering the data contained
in the databases.

Because of this, the hot backup methods can’t copy any of the files associated
with the server operations. Instead, all they can do is take snapshots of the data
contained within the database at specific moments in time. This type of backup is
called a data export.

In a data export hot backup, the backup program exports the table structure and
any data contained in the table into a text file that you can then copy to a safe
location. The text file formats can differ, from placing data in a comma-separated
spreadsheet format, to generating SQL statements that you can feed into the
MySQL server to re-create the tables.

U
si

ng
 t

he
 D

at
ab

as
e

CHAPTER 4 Using the Database 533

Each of the MySQL interfaces that you’ve been working with support data export
hot backups. The following sections describe how to use these options within each
of the interfaces.

From the command-line interface
The mysqldump command-line utility allows you to quickly and easily export a
table structure and data from the command line. The mysqldump program is usu-
ally included with the other binary programs in MySQL, and you should find it in
the same folder as the other MySQL command-line utility files (for XAMPP, that’s
the c:\xampp\mysql\bin folder in Windows, or /Applications/XAMPP/mysql/bin
in macOS).

Here’s the format for the mysqldump utility:

mysqldump [options] database [tablelist]

There are lots of options available for you to customize just how to perform the
export. Here are some of the more common ones you may run into:

»» --add-drop-database: Add a DROP DATABASE statement in the output to
replace any existing databases with the same name.

»» --add-drop-table: Add a DROP TABLE statement in the output to replace
any existing tables with the same name.

»» --all-databases: Backup all the tables from all the databases on the server.

»» --databases: List multiple databases to export.

»» --lock-tables: Lock the tables during the export.

»» --password: Specify the user password, or if empty, prompt for a password.

»» --tab: Produce a tab-separated output for the data instead of SQL statements.

»» --user: Specify the user account to log into the MySQL server for the export.

Follow these steps to back up the dbtest1 database tables using the mysqldump
utility:

1.	 Open a command line in Windows or a Terminal session in Linux or macOS.

2.	 Change to the MySQL folder that contains the MySQL utilities for your
installation environment.

For XAMPP on Windows, that’s:

cd \xampp\mysql\bin

534 BOOK 5 MySQL

3.	 Run the mysqldump utility to export the table data from the dbtest1
database.

By default, the mysqldump utility will output the database contents to the
screen. To save it to a file, you must redirect the output to a file. Enter this
command:

C:\xampp\mysql\bin>mysqldump --user=root --password dbtest1 > dbtest1.sql

Enter password:

C:\xampp\mysql\bin>

4.	 View the generated dbtest1.sql file using your favorite text editor.

Figure 4-7 shows the results from my database.

As you peruse through the dbtest1.sql file that the mysqldump utility gener-
ated, you’ll probably recognize the SQL statements that it uses. For each table in
the database, it generates a CREATE TABLE statement to rebuild the table struc-
ture; then it generates an INSERT statement to add each data record from the
original table.

FIGURE 4-7:
The output from

the mysqldump
utility.

U
si

ng
 t

he
 D

at
ab

as
e

CHAPTER 4 Using the Database 535

Using Workbench
The MySQL Workbench graphical program provides a nice form for you to use to
pick out the mysqldump options for the export. Follow these steps to generate an
export file using Workbench:

1.	 Ensure that the MySQL server is running, and then start the Workbench
tool.

2.	 Click the Data Export link from the Management section in the Navigator
window pane.

Figure 4-8 shows what the Data Export interface looks like.

3.	 Single-click the dbtest2 database entry in the left-hand window of the
Tables to Export section of the main window.

The tables contained in the dbtest2 database appear in the right-hand side
window.

4.	 Select the check box for the dbtest2 database in the left-hand window.

This automatically selects the check boxes for the tables it contains.

FIGURE 4-8:
The Workbench

Data Export
window.

536 BOOK 5 MySQL

5.	 Under the right-hand side window, ensure that the drop-down box has
the Dump Structure and Data option selected.

6.	 In the Export Options section, select the Export to Self-Contained File
radio button and specify the location and name of the .sql file that will
contain the export.

The default will create a file in your Documents folder under the dump folder.

Alternatively, you can opt to save the export as a project, which generates
multiple files for each table. This allows you some more flexibility when
restoring the data, but it’s more difficult to manage the exported files.

7.	 Click the Advanced Options button at the top of the window.

A complete list of options for customizing the export appears, as shown in
Figure 4-9.

8.	 Click the Return button to return to the main Data Export interface
window.

9.	 Click the Start Export button at the bottom of the window.

A dialog box appears, prompting you for the root user account password.

FIGURE 4-9:
The Workbench

Data Export
advanced options

window.

U
si

ng
 t

he
 D

at
ab

as
e

CHAPTER 4 Using the Database 537

10.	For XAMPP, leave it empty and click the OK button.

The Export Progress window appears, showing the progress of the export.

11.	Use your favorite text editor to view the .sql file that was generated by
the export.

Using a graphical interface certainly makes the data export process much simpler!

Using phpMyAdmin
The phpMyAdmin tool has an excellent graphical interface for handling data
exports. After you open the phpMyAdmin tool, click the Export button at the top
of the main web page. This produces the interface shown in Figure 4-10.

The main export page allows you to choose from two options:

»» A quick export, which exports all the tables from all the databases using the
mysqldump default options.

»» A custom export, which allows you to pick and choose the databases and
options for the export.

One nice feature about the phpMyAdmin export interface is that it allows you to
select the format of the export file from a long list of options, shown in Table 4-1.

FIGURE 4-10:
The phpMyAdmin
export web page.

538 BOOK 5 MySQL

That’s a lot of different ways to export your database data!

If you select the Custom export method, you can select the databases to export, the
output method (and file type if you save it to a file), the format of the output, and
any MySQL directives (such as to add the DROP DATABASE or DROP TABLE state-
ments). This gives you maximum flexibility when creating your database backups!

Restoring your data
Backups are only good if you have the ability to use them to restore the database.
Testing out the restore capabilities of your system before you have a catastrophic
event is always a good idea.

Each of the MySQL interface methods provides a different way of restoring data
from the backup files. This section walks through each of these methods.

TABLE 4-1	 The phpMyAdmin Export Formats
Format Description

CodeGen The NHibernate file format

CSV The comma-separated values format

CSV for Microsoft Excel The CSV format with customizations for Microsoft Excel

Microsoft Word 2000 The Microsoft 2000 Word document

JSON The JavaScript Object Notation format

LaTeX The Lamport TeX format commonly used for academic
publications

MediaWiki Table The Wikipedia table format

OpenDocument Spreadsheet The open spreadsheet standard format

OpenDocument Text The open document standard format

PDF The Adobe Portable Document Format

PHP array PHP code to create an array of the data

SQL SQL statements to rebuild the table

Texy! XHTML formatted data

YAML A data serialization format that is human-readable

U
si

ng
 t

he
 D

at
ab

as
e

CHAPTER 4 Using the Database 539

From the command-line interface
To restore a database using the SQL dump file generated by the mysqldump utility,
just pass the file into the input of the mysql command-line tool using the com-
mand line redirect symbol (<). That looks like this:

mysql --user=root --password dbtest1 < dbtest1.sql

The MySQL server will process the SQL statements contained in the dbtest1.sql
file and apply them against the database you specify on the command line. This
is a great way to move a database to a new database, either on the same server or
on a remote server!

If you opt to save only the table data using either the tab or comma-separated
formats, you can read the data into a table by using the LOAD DATA INFILE SQL
statement:

LOAD DATA INFILE filename INTO TABLE table

The data fields in the file must match the order in which they appear in the table.

From Workbench
The MySQL Workbench tool provides a graphical interface for loading the backup
file. After you open Workbench, click the Data Import/Restore link in the Manage-
ment section of the Navigator window pane. Figure 4-11 shows what that window
looks like.

In the Import Options section, select either the project folder or the export file
that you created with the Export feature. Select the database to use for the import
in the Default Target Schema drop-down box.

If you opted to save the backup as a project, you can customize the restore by
selecting exactly which objects to restore. If you opted to save the backup as a
single file as in the example, you must restore all the objects in the export file.

After you’ve selected the export file and options, click the Start Import button at
the bottom of the window to begin the import process. That makes restoring table
data almost simple!

From phpMyAdmin
Importing data from an export backup using phpMyAdmin is also a fairly sim-
ple process. After you open the phpMyAdmin web tool, click the Import button
at the top of the web page. This produces the Import Web page, as shown in
Figure 4-12.

540 BOOK 5 MySQL

From here, you can browse to find the export file that you generated, along with
selecting some options for the import, such as the file format. After you’ve made
your selections, click the Go button at the bottom of the web page to start the
import.

FIGURE 4-11:
The Workbench

Data Import/
Restore window.

FIGURE 4-12:
The phpMyAdmin
Import web page.

CHAPTER 5 Communicating with the Database from PHP Scripts 541

Communicating with
the Database from
PHP Scripts

In the previous chapter, I show you how to insert, delete, and manage data in
a MySQL database. Now that you have your content all ready for your applica-
tion, there’s just one more piece to add in the assembly line to complete your

dynamic web applications. This chapter explores how you can interact with the
MySQL database server from your PHP programs to retrieve the stored data, add
new data records, and remove existing data records. This chapter first explores
how PHP interacts with databases in general. Then it focuses on the most popular
method used for accessing MySQL databases from web applications: the mysqli
library.

Database Support in PHP
The PHP programming language doesn’t have any functions for accessing data-
bases directly built into the language. However, there are plenty of PHP exten-
sion libraries available to help out. The PHP extensions provide additional

Chapter 5

IN THIS CHAPTER

»» Examining the PHP database libraries

»» Connecting to the MySQL server

»» Submitting SQL queries

»» Retrieving result set data

»» Exploring a PHP database application

542 BOOK 5 MySQL

functionality to the main PHP language by incorporating add-on libraries
(see Book 4, Chapter 1).

PHP has a long history of providing library support for accessing different types of
databases, making it a popular programming language to use with lots of different
database servers. Table 5-1 lists the database server libraries currently available to
use with your PHP code.

In addition to the specific database extensions available in PHP, there are also
three abstract database interfaces available:

TABLE 5-1	 PHP Database Extension Libraries
Library Description

CUBRID An open-source relational database with object extensions

DB++ A non-SQL-based relational database created by Concept asa

dBase An old proprietary database file format used mostly for
microcomputers

FireBird/InterBase A relational database based on the ISO SQL-2003 standard

IBM DB2 A proprietary IBM relational database format

Informix An old relational database format acquired by IBM in 2001

Ingres An open-source relational database designed for large applications

MaxDB An ANSI SQL-92-compliant relational database used by the
SAP software

Mongo An open-source document-oriented database

mSQL A lightweight SQL-based database created by Hughes
Technologies

MySQL The open-source MySQL database server

OCI8 The Oracle database server

PostgreSQL An open-source database based on the original Ingres database

SQLite An embeddable database system for small environments

SQLite3 An update to the SQLite database system

SQLSRV The Microsoft SQL database server

tokyo_tyrant An open-source distributed database system

	Title Page

	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part
1 Getting Started with Web Programming
	Chapter 1 Examining the Pieces of Web Programming
	Creating a Simple Web Page
	Kicking things off with the World Wide Web
	Making sense of markup languages
	Retrieving HTML documents
	Styling

	Creating a Dynamic Web Page
	Client-side programming
	Server-side programming
	Combining client-side and server-side programming

	Storing Content

	Chapter 2 Using a Web Server
	Recognizing What’s Required
	The web server
	The PHP server
	The database server

	Considering Your Server Options
	Using a web-hosting company
	Building your own server environment
	Using premade servers

	Tweaking the Servers
	Customizing the Apache Server
	Customizing the MySQL server
	Customizing the PHP server

	Chapter 3 Building a Development Environment
	Knowing Which Tools to Avoid
	Graphical desktop tools
	Web-hosting sites
	Word processors

	Working with the Right Tools
	Text editors
	Program editors
	Integrated development environments
	Browser debuggers

	Part
2 HTML5 and CSS3
	Chapter 1 The Basics of HTML5
	Diving into Document Structure
	Elements, tags, and attributes
	Document type
	Page definition
	Page sections

	Looking at the Basic HTML5 Elements
	Headings
	Text groupings
	Breaks

	Marking Your Text
	Formatting text
	Using hypertext

	Working with Characters
	Character sets
	Special characters

	Making a List (And Checking It Twice)
	Unordered lists
	Ordered lists
	Description lists

	Building Tables
	Defining a table
	Defining the table’s rows and columns
	Defining the table headings

	Chapter 2 The Basics of CSS3
	Understanding Styles
	Defining the rules of CSS3
	Applying style rules
	Cascading style rules

	Styling Text
	Setting the font
	Playing with color

	Working with the Box Model
	Styling Tables
	Table borders
	Table data

	Positioning Elements
	Putting elements in a specific place
	Floating elements

	Chapter 3 HTML5 Forms
	Understanding HTML5 Forms
	Defining a form
	Working with form fields

	Using Input Fields
	Text boxes
	Password entry
	Check boxes
	Radio buttons
	Hidden fields
	File upload
	Buttons

	Adding a Text Area
	Using Drop-Down Lists
	Enhancing HTML5 Forms
	Data lists
	Additional input fields

	Using HTML5 Data Validation
	Holding your place
	Making certain data required
	Validating data types

	Chapter 4 Advanced CSS3
	Rounding Your Corners
	Using Border Images
	Looking at the CSS3 Colors
	Playing with Color Gradients
	Linear gradients
	Radial gradients

	Adding Shadows
	Text shadows
	Box shadows

	Creating Fonts
	Focusing on font files
	Working with web fonts

	Handling Media Queries
	Using the @media command
	Dealing with CSS3 media queries
	Applying multiple style sheets

	Chapter 5 HTML5 and Multimedia
	Working with Images
	Placing images
	Styling images
	Linking images
	Working with image maps
	Using HTML5 image additions

	Playing Audio
	Embedded audio
	Digital audio formats
	Audio the HTML5 way

	Watching Videos
	Paying attention to video quality
	Looking at digital video formats
	Putting videos in your web page

	Getting Help from Streamers

	Part
3 JavaScript
	Chapter 1 Introducing JavaScript
	Knowing Why You Should Use JavaScript
	Changing web page content
	Changing web page styles

	Seeing Where to Put Your JavaScript Code
	Embedding JavaScript
	Using external JavaScript files

	The Basics of JavaScript
	Working with data
	Data types
	Arrays of data
	Operators

	Controlling Program Flow
	Conditional statements
	Loops

	Working with Functions
	Creating a function
	Using a function

	Chapter 2 Advanced JavaScript Coding
	Understanding the Document Object Model
	The Document Object Model tree
	JavaScript and the Document Object Model

	Finding Your Elements
	Getting to the point
	Walking the tree

	Working with Document Object Model Form Data
	Text boxes
	Text areas
	Check boxes
	Radio buttons

	Chapter 3 Using jQuery
	Loading the jQuery Library
	Option 1: Downloading the library file to your server
	Option 2: Using a content delivery network

	Using jQuery Functions
	Finding Elements
	Replacing Data
	Working with text
	Working with HTML
	Working with attributes
	Working with form values

	Changing Styles
	Playing with properties
	Using CSS objects
	Using CSS classes

	Changing the Document Object Model
	Adding a node
	Removing a node

	Playing with Animation

	Chapter 4 Reacting to Events with JavaScript and jQuery
	Understanding Events
	Event-driven programming
	Watching the mouse
	Listening for keystrokes
	Paying attention to the page itself

	Focusing on JavaScript and Events
	Saying hello and goodbye
	Listening for mouse events
	Listening for keystrokes
	Event listeners

	Looking at jQuery and Events
	jQuery event functions
	The jQuery event handler

	Chapter 5 Troubleshooting JavaScript Programs
	Identifying Errors
	Working with Browser Developer Tools
	The DOM Explorer
	The Console
	The Debugger

	Working Around Errors

	Part
4 PHP
	Chapter 1 Understanding PHP Basics
	Seeing the Benefits of PHP
	A centralized programming language
	Centralized data management

	Understanding How to Use PHP
	Embedding PHP code
	Identifying PHP pages
	Displaying output
	Handling new-line characters

	Working with PHP Variables
	Declaring variables
	Seeing which data types PHP supports
	Grouping data values with array variables

	Using PHP Operators
	Arithmetic operators
	Arithmetic shortcuts
	Boolean operators
	String operators

	Including Files
	The include() function
	The require() function

	Chapter 2 PHP Flow Control
	Using Logic Control
	The if statement
	The else statement
	The elseif statement
	The switch statement

	Looping
	The while family
	The for statement
	The foreach statement

	Building Your Own Functions
	Working with Event-Driven PHP
	Working with links
	Processing form data

	Chapter 3 PHP Libraries
	How PHP Uses Libraries
	Exploring PHP extensions
	Examining the PHP extensions
	Including extensions
	Adding additional extensions

	Text Functions
	Altering string values
	Splitting strings
	Testing string values
	Searching strings

	Math Functions
	Number theory
	Calculating logs and exponents
	Working the angles
	Hyperbolic functions
	Tracking statistics

	Date and Time Functions
	Generating dates
	Using timestamps
	Calculating dates

	Image-Handling Functions

	Chapter 4 Considering PHP Security
	Exploring PHP Vulnerabilities
	Cross-site scripting
	Data spoofing
	Invalid data
	Unauthorized file access

	PHP Vulnerability Solutions
	Sanitizing data
	Validating data

	Chapter 5 Object-Oriented PHP Programming
	Understanding the Basics of Object-Oriented Programming
	Defining a class
	Creating an object instance

	Using Magic Class Methods
	Defining mutator magic methods
	Defining accessor magic methods
	The constructor
	The destructor
	Copying objects
	Displaying objects

	Loading Classes
	Extending Classes

	Chapter 6 Sessions and Carts
	Storing Persistent Data
	The purpose of HTTP cookies
	Types of cookies
	The anatomy of a cookie
	Cookie rules

	PHP and Cookies
	Setting cookies
	Reading cookies
	Modifying and deleting cookies

	PHP and Sessions
	Starting a session
	Storing and retrieving session data
	Removing session data

	Shopping Carts
	Creating a cart
	Placing items in the cart
	Retrieving items from a cart
	Removing items from a cart
	Putting it all together

	Part
5 MySQL
	Chapter 1 Introducing MySQL
	Seeing the Purpose of a Database
	How databases work
	Relational databases
	Database data types
	Data constraints
	Structured Query Language

	Presenting MySQL
	MySQL features
	Storage engines
	Data permissions

	Advanced MySQL Features
	Handling transactions
	Making sure your database is ACID compliant
	Examining the views
	Working with stored procedures
	Pulling triggers
	Working with blobs

	Chapter 2 Administering MySQL
	MySQL Administration Tools
	Working from the command line
	Using MySQL Workbench
	Using the phpMyAdmin tool

	Managing User Accounts
	Creating a user account
	Managing user privileges

	Chapter 3 Designing and Building a Database
	Managing Your Data
	The first normal form
	The second normal form
	The third normal form

	Creating Databases
	Using the MySQL command line
	Using MySQL Workbench
	Using phpMyAdmin

	Building Tables
	Working with tables using the command-line interface
	Working with tables using Workbench
	Working with tables in phpMyAdmin

	Chapter 4 Using the Database
	Working with Data
	The MySQL command-line interface
	The MySQL Workbench tool
	The phpMyAdmin tool

	Searching for Data
	The basic SELECT format
	More advanced queries

	Playing It Safe with Data
	Performing data backups
	Restoring your data

	Chapter 5 Communicating with the Database from PHP Scripts
	Database Support in PHP
	Using the mysqli Library
	Connecting to the database
	Closing the connection
	Submitting queries
	Retrieving data
	Being prepared
	Checking for errors
	Miscellaneous functions

	Putting It All Together

	Part
6 Creating Object-Oriented Programs
	Chapter 1 Designing an Object-Oriented Application
	Determining Application Requirements
	Creating the Application Database
	Designing the database
	Creating the database

	Designing the Application Objects
	Designing objects
	Coding the objects in PHP

	Designing the Application Layout
	Designing web page layout
	The AuctionHelper page layout

	Coding the Website Layout
	Creating the web page template
	Creating the support files

	Chapter 2 Implementing an Object-Oriented Application
	Working with Events
	Bidder Object Events
	Listing bidders
	Adding a new bidder
	Searching for a bidder

	Item Object Events
	Listing items
	Adding a new item
	Searching for an item

	Logging Out of a Web Application
	Testing Web Applications

	Chapter 3 Using AJAX
	Getting to Know AJAX
	Communicating Using JavaScript
	Considering XMLHttpRequest class methods
	Focusing on XMLHttpRequest class properties
	Trying out AJAX

	Using the jQuery AJAX Library
	The jQuery $.ajax() function
	The jQuery $.get() function

	Transferring Data in AJAX
	Looking at the XML standard
	Using XML in PHP
	Using XML in JavaScript

	Modifying the AuctionHelper Application

	Chapter 4 Extending WordPress
	Getting Acquainted with WordPress
	What WordPress can do for you
	How to run WordPress
	Parts of a WordPress website

	Installing WordPress
	Downloading the WordPress software
	Creating the database objects
	Configuring WordPress

	Examining the Dashboard
	Using WordPress
	Exploring the World of Plugins
	WordPress APIs
	Working with plugins and widgets

	Creating Your Own Widget
	Coding the widget
	Activating the widget plugin
	Adding the widget

	Part
7 Using PHP Frameworks
	Chapter 1 The MVC Method
	Getting Acquainted with MVC
	Exploring the MVC method
	Digging into the MVC components
	Communicating in MVC

	Comparing MVC to Other Web Models
	The MVP method
	The MVVM method

	Seeing How MVC Fits into N-Tier Theory
	Implementing MVC

	Chapter 2 Selecting a Framework
	Getting to Know PHP Frameworks
	Convention over configuration
	Scaffolding
	Routing
	Helper methods
	Form validation
	Support for mobile devices
	Templates
	Unit testing

	Knowing Why You Should Use a Framework
	Focusing on Popular PHP Frameworks
	CakePHP
	CodeIgniter
	Laravel
	Symfony
	Zend Framework

	Looking At Micro Frameworks
	Lumen
	Slim
	Yii

	Chapter 3 Creating an Application Using Frameworks
	Building the Template
	Initializing the application
	Exploring the files and folders
	Defining the database environment

	Creating an Application Scaffold
	Installing the scaffolding
	Exploring the scaffolding code

	Modifying the Application Scaffold
	Adding a new feature link
	Creating the controller code
	Modifying the model code
	Painting a view

	Index
	EULA

