
Bu
ild

in
g

a
D

ev
el

op
m

en
t

En
vi

ro
nm

en
t

CHAPTER 3 Building a Development Environment 55

to the end of the filename. To save a program file using Notepad, follow these
steps:

1. Choose File ➪ Save As from the menu bar at the top of the editor.

The Save As dialog box, shown in Figure 3-2, appears.

2. In the drop-down list at the top of the Save As dialog box, navigate to the
folder where you want to save the program file.

3. From the Save As Type text box near the bottom of the Save As dialog
box, select All Files (*.*).

This prevents Notepad from appending the .txt file extension to your
filename.

4. In the File Name field, enter the filename for your program file, including
the file extension you want to use.

5. Click Save to save the program file.

Your program file is properly saved in the correct format, with the correct
filename, in the correct location.

SEEING FILE EXTENSIONS

In Microsoft Windows you use File Explorer to navigate the storage devices on
your system to open files. Unfortunately, the default setup in File Explorer is to
hide the file extension part of the filename (the part after the period) so that it
doesn’t confuse novice computer users.

FIGURE 3-2:
The Microsoft

Notepad Save As
dialog box.

56 BOOK 1 Getting Started with Web Programming

That can have the opposite effect for programmers, adding confusion when you’re
trying to look for a specific file. You may use the same filename for multiple files
with different extensions. Fortunately, you can easily change this default setting
in Windows. Just follow these steps:

1. In Windows 8 or 10, open Settings. In Windows 7, open the Control Panel.

2. In Windows 8 or 10, type File Explorer Options in the search bar and
press Enter.

3. Click the icon for the File Explorer Options tool that appears in the search
results.

4. In Windows 7, click the File Explorer Options icon in the Control Panel.

You may have to go to the Advanced view to see it.

After you open File Explorer Options, the dialog box should look like Figure 3-3.

5. Click the View tab.

6. Remove the check mark from the Hide Extensions for Known File Types
check box, as shown in Figure 3-4.

7. Click OK.

Now you’ll be able to see the full filename, including the extension, when you
look for your programs using File Explorer.

FIGURE 3-3:
The File Explorer

Options dialog
box in Windows.

Bu
ild

in
g

a
D

ev
el

op
m

en
t

En
vi

ro
nm

en
t

CHAPTER 3 Building a Development Environment 57

SETTING THE DEFAULT APPLICATION

Now that you can see the full filename of your program files in File Explorer,
there’s just one more hurdle to cross. If you want to open your program files using
Notepad by default, you’ll need to tell File Explorer to do that. Follow these steps:

1. Navigate to the program file, and right-click the filename.

2. In the menu that appears, select Open.

The Open dialog box appears.

3. Select Notepad from the list of programs, and then select the check box
to always open files of this type using the program.

Now you’ll be able to double-click your program files in File Explorer to
automatically open them in Notepad.

If you’re running macOS
If you’re running macOS (or one of the earlier Mac OS X versions), the text editor
that comes standard is called TextEdit. The TextEdit application actually provides
quite a lot of features for a standard text editor — it recognizes and allows you to
edit a few different types of text files, including rich text files (.rtf) and HTML files.

The drawback to TextEdit is that sometimes it can be too smart. Trying to save
and edit an HTML file in TextEdit can be more complicated than it should be. By
default, TextEdit will try to display the HTML tags as their graphical equivalents
in the editor window, as shown in Figure 3-5.

FIGURE 3-4:
Removing the

Hide Extensions
for Known File

Types check
mark.

58 BOOK 1 Getting Started with Web Programming

As you can see in Figure 3-5, TextEdit actually shows the text as the HTML tags
format it instead of the actual HTML code. This won’t work for editing an HTML
file, because you need to see the code text instead of what the code generates.
There’s an easy way to fix that — just follow these steps:

1. Choose TextEdit ➪ Preferences.

The Preferences dialog box, shown in Figure 3-6, appears.

FIGURE 3-5:
Using the default
TextEdit settings

to edit an
HTML file.

FIGURE 3-6:
The Preferences

dialog box in
TextEdit.

Bu
ild

in
g

a
D

ev
el

op
m

en
t

En
vi

ro
nm

en
t

CHAPTER 3 Building a Development Environment 59

2. On the New Document tab, in the Format section, select the Plain Text
radio button.

3. In the Options section, remove the check mark from the following
check boxes:

• Correct Spelling Automatically

• Smart Quotes

• Smart Dashes

• Smart Links

4. Click the Open and Save tab (see Figure 3-7).

5. In the When Opening a File section, check the Display HTML Files as HTML
Code Instead of Formatted Text check box.

6. In the When Saving a File section, remove the check mark from the Add
“.txt” File Extension to Plain Text Files check box.

7. Close the Preferences dialog box to save the settings.

Now you’re all set to start editing your program code using TextEdit!

FIGURE 3-7:
The Open and

Save tab of the
Preferences
 dialog box.

60 BOOK 1 Getting Started with Web Programming

If you’re running Linux
The Linux environment was made by programmers, for programmers. Because of
that, even the simple text editors installed by default in Linux distributions pro-
vide some basic features that come in handy when coding.

Which text editor comes with your Linux distribution usually depends on the desk-
top environment. Linux supports many different graphical desktop environments,
but the two most common are GNOME and KDE. This section walks through the
default text editors found in each.

THE GNOME EDITOR

If you’re working in a GNOME desktop environment, the default text editor is
gedit, shown in Figure 3-8.

The gedit editor automatically saves program files as plain text format and doesn’t
try to add a .txt file extension to filenames. There’s nothing special you need to
do to dive into coding your programs using gedit. Plus, it has some advanced
 features specifically for programming that you would find in program editors (see
the “Program editors” section later in this chapter).

THE KDE EDITOR

The default text editor used in the KDE graphical desktop environment is Kate,
shown in Figure 3-9.

FIGURE 3-8:
The gedit

editor used in
Linux GNOME

desktops.

Bu
ild

in
g

a
D

ev
el

op
m

en
t

En
vi

ro
nm

en
t

CHAPTER 3 Building a Development Environment 61

Just like gedit, the Kate editor contains lots of programmer-friendly features right
out of the box. Again, no special configuration is required before you can start
editing your program code in Kate.

Program editors
The next step up from standard text editors is a family of tools called program
editors. A program editor works just like a text editor, but it has a few additional
built-in features that come in handy for programming. Here are some of the fea-
tures that you’ll find in program editors:

 » Line numbering: Providing the line numbers off to the side of the window is
a lifesaver when coding. When an error message tells you there’s a problem
on line 1935, not having to count every line to get there helps!

 » Syntax highlighting: With syntax highlighting, the editor uses different colors
for different parts of the program. Program keywords are displayed using
different colors to help make them stand out from data in the code file.

 » Syntax error marking: Text that appears to be used as a keyword but that
isn’t found in the code statement dictionary is marked as an error. This
feature can be a time-saver by helping you catch simple typos in your
program code.

There are lots of commercial program editors, but some of the best program edi-
tors are actually free. This section discusses some of the better free ones available
for HTML, CSS, JavaScript, and PHP coding.

FIGURE 3-9:
The Kate editor

used in Linux KDE
desktops.

62 BOOK 1 Getting Started with Web Programming

Notepad++
If you’re running Microsoft Windows, the Notepad++ tool is a great place to start.
As its name suggests, it’s like Notepad, but better. You can download Note-
pad++ from www.notepad-plus-plus.org. The main editing window is shown in
Figure 3-10.

The main interface for Notepad++ looks similar to Notepad, so there’s nothing
different to get used to. By default, it shows line numbers along the left margin, as
well as the type of file and the column location of the cursor at the bottom.

Notepad++ recognizes the syntax for many different types of programming lan-
guages, including HTML, CSS, JavaScript, and PHP. It highlights the keywords and
will even match up opening and closing block statements. If you miss a closing
block, Notepad++ will point that out.

Scintilla and SciTE
The Scintilla library (www.scintilla.org) is an open-source project to provide a
programming text editor engine for use in any type of environment. Developers
can embed the Scintilla editor into any type of application free of charge.

The SciTE package is a desktop text editor tool that implements the Scintilla
library. The SciTE package is available for Windows, macOS, and Linux plat-
forms. You can download it from the Scintilla website for the Windows and Linux

FIGURE 3-10:
Notepad++.

http://www.notepad-plus-plus.org
http://www.scintilla.org

Bu
ild

in
g

a
D

ev
el

op
m

en
t

En
vi

ro
nm

en
t

CHAPTER 3 Building a Development Environment 63

platforms, and it’s available in the Apple Store for the macOS platform. Figure 3-11
shows the basic SciTE editor window in action.

SciTE provides all the program editing features mentioned earlier. It recognizes
the syntax of many different programming languages and can help you organize
your code by marking and collapsing code sections (this comes in handy if you
write long if-then statement sections).

jEdit
The jEdit program editor (www.jedit.org) is a little bit different from the other
packages. It’s written in Java code, so you can run it in any platform that supports
Java. That means you can use the exact same editor interface in Windows, macOS,
or Linux! jEdit supports all the common features you’d expect from a program
editor. Figure 3-12 shows the basic jEdit editor window.

Because jEdit is a Java application, your desktop platform must have either a Java
Runtime Environment (JRE) or Java Development Kit (JDK) package installed in
order for it to work. You can download and install one from Oracle at www.oracle.
com/technetwork/java/javase/downloads. Also, because jEdit runs as a Java
application, you may find it slower than some of the native desktop packages such
as Notepad++ or SciTE.

FIGURE 3-11:
SciTE.

http://www.jedit.org
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

64 BOOK 1 Getting Started with Web Programming

Integrated development environments
Moving up the ladder of tools, the laser-guided miter tool for program develop-
ment is the integrated development environment (IDE). IDE packages provide every-
thing you could possibly need to develop any size of web application.

Here are some of the advanced features IDE packages provide:

 » Code completion: Start typing a code statement, and the package will provide
a pop-up list of statements that match what you’re typing. It also shows what
parameters are required and optional for the statement.

 » Code formatting: The IDE automatically indents code blocks to help make
your code more readable.

 » Program execution: You can run your code directly from the editor window
without having to jump out to a web browser.

 » Debugging: You can step through the program code line by line, watch how
variables are set, and see whether any error messages are generated.

 » Project and file management: Most IDE packages allow you to group your
application files into projects. This allows you to open a project and see just the
files associated with that application. Some will even upload the project files to
your web-hosting site for you, similar to what the graphical desktop tools do.

Using an IDE tool is not for the faint of heart. Because of all the fancy features,
learning how to use the IDE interface can be almost as complicated as learning the
programming language!

FIGURE 3-12:
jEdit.

Bu
ild

in
g

a
D

ev
el

op
m

en
t

En
vi

ro
nm

en
t

CHAPTER 3 Building a Development Environment 65

There are both commercial and open-source IDE packages available for the PHP
environment. To give you a general idea of how IDE packages operate, this section
walks through two of the more popular ones: Netbeans and Eclipse.

Netbeans
The Netbeans IDE package was originally developed by Sun Microsystems and
released as an open-source IDE for its Java programming language environment
(thus the “beans” part of the name). When Oracle acquired Sun, it maintained
support for Netbeans, and continued development of it with updated releases.

The Netbeans IDE now contains support for several different programming lan-
guages besides Java by using additional plug-in modules. As you can guess, the
reason I’m mentioning it here is because there’s a plug-in module for PHP.

You can download the Netbeans editor with the PHP module already installed,
making it easy to install. Just go to www.netbeans.org/downloads and click the
Download button under the PHP category.

When you start Netbeans, it will prompt you to start a new project, as shown in
Figure 3-13.

Netbeans contains project templates for HTML and JavaScript applications, as
well as PHP applications. When you start a new PHP project, Netbeans automati-
cally creates an index.php file as the main program file for the project. It even
builds a rough template for your code. As you would expect from an IDE, when you

FIGURE 3-13:
The Netbeans

project
 dialog box.

http://www.netbeans.org/downloads

66 BOOK 1 Getting Started with Web Programming

start typing a PHP function name, Netbeans opens a pop-up box that shows all the
PHP functions that match what you’re typing, as shown in Figure 3-14.

Not only does it show the code completion list, as you can see in Figure 3-14,
but it also shows you the PHP manual definition of the function! This is cer-
tainly a handy tool to have available if you plan on doing any large-scale PHP
development.

Eclipse
The other big name in PHP IDE packages is the Eclipse PHP Development Tool
(usually just called Eclipse PDT). Eclipse was also originally designed as a Java
application IDE. Many open-source proponents didn’t trust Sun Microsystems
maintaining the only IDE for Java, so they set out to develop their own. (The
story goes that there was no intentional wordplay on the name Eclipse versus Sun
Microsystems. If you can believe that, I may have a bridge to sell you.)

Just like the Netbeans IDE, Eclipse evolved from a Java-only IDE to support many
different programming languages via the use of plug-in modules. You can down-
load the Eclipse PDT as an all-in-one package at www.eclipse.org/pdt.

Just like the jEdit editor, Eclipse PDT is written as a Java application and requires
that you have a JRE or JDK installed on your workstation (see “jEdit,” earlier in
this chapter).

FIGURE 3-14:
The Netbeans

code completion
dialog box.

https://www.eclipse.org/pdt

Bu
ild

in
g

a
D

ev
el

op
m

en
t

En
vi

ro
nm

en
t

CHAPTER 3 Building a Development Environment 67

When you start Eclipse, a menu system appears, as shown in Figure 3-15.

This allows you to easily change the IDE configuration, start a new project, or open
an existing project. Eclipse has all the same features that Netbeans offers. Plus, it
has one additional feature: Eclipse PDT contains the advanced PHP Debugger tool
developed by Zend, the company that sponsors PHP. The Debugger tool can help
point out errors in your PHP code immediately as you type, or it can debug your
code as you run it in the Eclipse editor window. Figure 3-16 demonstrates Eclipse
pointing out a PHP coding error I made in my code.

Having an advanced PHP debugger at your fingertips can be a great time-saver
when you’re developing large applications!

Browser debuggers
Before I finish this chapter, I want to mention one more tool that you have availa-
ble when trying to troubleshoot web application issues. Most browsers today have
a code-debugging feature either built in or easily installable. The browser debug-
gers can help you troubleshoot HTML, CSS, and JavaScript issues in the web page
you send to the client. Figure 3-17 shows the debugging console in the Microsoft
Edge web browser after you press F12 to activate it.

FIGURE 3-15:
The Eclipse
start menu.

68 BOOK 1 Getting Started with Web Programming

Browser debuggers can show you exactly where something has gone wrong in
the HTML or CSS code. They’re also invaluable when working with JavaScript
applications.

FIGURE 3-16:
The PHP

 debugger in
action in Eclipse.

FIGURE 3-17:
The Microsoft

Edge
web browser

debugging a web
page.

Bu
ild

in
g

a
D

ev
el

op
m

en
t

En
vi

ro
nm

en
t

CHAPTER 3 Building a Development Environment 69

When you’re developing web applications, it’s crucial that you test, do some more
testing, and then test again. Testing your application in every possible way your
website visitors will use it is the only way to know just what to expect.

Things are getting better, but different browsers still may handle HTML, CSS, and
even JavaScript code differently. Nowhere is this more evident than when errors
occur.

When an error occurs in HTML or CSS code, the browser doesn’t display any type
of error message. Instead, it tries to fix the problem on its own so it can display
the web page. Unfortunately, not all browsers fix code the same way. If you run
into a situation where your web page looks different on two different browsers,
most likely you have some type of HTML or CSS code issue that the browsers are
interpreting differently.

2HTML5 and CSS3

Contents at a Glance
CHAPTER 1: The Basics of HTML5 . 73

Diving into Document Structure . 73
Looking at the Basic HTML5 Elements . 81
Marking Your Text . 85
Working with Characters . 90
Making a List (And Checking It Twice) . 92
Building Tables . 96

CHAPTER 2: The Basics of CSS3 . 103
Understanding Styles . 103
Styling Text . 112
Working with the Box Model . 119
Styling Tables . 121
Positioning Elements . 125

CHAPTER 3: HTML5 Forms . 135
Understanding HTML5 Forms . 135
Using Input Fields . 138
Adding a Text Area . 146
Using Drop-Down Lists . 147
Enhancing HTML5 Forms . 149
Using HTML5 Data Validation . 154

CHAPTER 4: Advanced CSS3 . 157
Rounding Your Corners . 157
Using Border Images . 159
Looking at the CSS3 Colors . 162
Playing with Color Gradients . 164
Adding Shadows . 166
Creating Fonts . 168
Handling Media Queries . 171

CHAPTER 5: HTML5 and Multimedia . 177
Working with Images . 177
Playing Audio . 185
Watching Videos . 190
Getting Help from Streamers . 194

CHAPTER 1 The Basics of HTML5 73

The Basics of HTML5

The core of your web application is the HTML5 code you create to present
the content to your site visitors. You need an understanding of how HTML5
works and how to use it to best present your information. This chapter

describes the basics of HTML5 and demonstrates how to use it to create web pages.

Diving into Document Structure
The HTML5 standard defines a specific structure that you must follow when
defining your web pages so that they appear the same way in all browsers. This
structure includes not only the markups that you use to tell browsers how to dis-
play your web page content, but also some overhead information you need to
provide to the browser. This section explains the overall structure of an HTML5
program, and tells you what you need to include to ensure your clients’ browsers
know how to work with your web pages correctly.

Elements, tags, and attributes
An HTML5 document consists of one or more elements. An element is any object
contained within your web page. That can be headings, paragraphs of text, form

Chapter 1

IN THIS CHAPTER

 » Looking at the HTML5 document
structure

 » Identifying the basic HTML5 elements

 » Formatting text

 » Using special characters

 » Creating lists

 » Working with tables

74 BOOK 2 HTML5 and CSS3

fields, or even multimedia clips. Your browser works with each element individu-
ally, positioning it in the browser window and styling it as directed.

You define elements in your web page by using tags. A tag identifies the type of
element so the browser knows just how to handle the content it contains. The
HTML5 specification defines two types of elements:

 » Two-sided elements: Two-sided elements are the more common type of
element. A two-sided element contains two parts: an opening tag and a closing
tag. The syntax for a two-sided element looks like this:

<element>content</element>

The first element tag is the opening tag. It contains the element name,
surrounded by the less-than symbol (<) and greater-than symbol (>), and
defines the start of the element definition.

The second tag is the closing tag; it defines the end of the element definition.
It points to the same element name, but the name is preceded by a forward
slash (/). The browser should handle any content between the two tags as
part of the element content. For example, the HTML5 h1 element defines a
heading like this:

<h1>This is a heading</h1>

The element instructs the browser to display the text This is a heading using
the font and size appropriate for a heading on the web page. It’s up to the
browser to determine just how to do that.

 » One-sided elements: One-sided elements don’t contain any content and
usually define some type of directive for the browser to take in the web page.
For example, the line break element instructs the browser to start a new line
in the web page:

Because there’s no content, there’s no need for a closing tag.

The older XHTML standard requires that one-sided tags include a closing
forward slash character at the end of the tag, such as
. This isn’t
required by HTML5, but it’s supported for backward compatibility. It’s very
common to still see that format used in HTML5 code.

Besides the basic element definition, many elements also allow you to define
attributes to apply to the element. Attributes provide further instructions to the
browser on how to handle the content contained within the element. When you
define an attribute for an element, you must also assign it a value.

Th
e

Ba
si

cs
 o

f H
TM

L5

CHAPTER 1 The Basics of HTML5 75

You include attributes and their values inside the opening tag of the element,
like this:

<element attribute="value">content</element>

You can define more than one attribute/value pair for the element. Just separate
them using a space in the opening tag:

<element attribute1="value1" attribute2="value2">

Attributes are commonly used to apply inline styles to elements:

<h1 style="color: red">Warning!!</h1>

The style attribute shown here defines additional styles the browser should apply
to the content inside the element. In this example, the browser will change the
font color of the text to red.

Document type
Every web page must follow an HTML or XHTML document standard so the
browser can parse it correctly. The very first element in the web page code is
the markup language standard your document follows. This element, called the
document type, is crucial, because the browser has to know what standard to follow
when parsing the code in your web page.

You define the document type using the <!DOCTYPE> tag. It contains one or more
attributes that define the markup language standard. Prior versions of HTML used
a very complicated format for the document type definition, pointing the browser
to a web page on the Internet that contained the standard definition.

Fortunately, the HTML5 standard reduced that complexity. To define an HTML5
document, you just need to include the following line:

<!DOCTYPE html>

When the browser sees this line at the start of your web page code, it knows to
parse the elements using the HTML5 standard.

If you omit the <!DOCTYPE> tag, the browser will still attempt to parse and pro-
cess the markup code. However, because the browser won’t know exactly which
standard to follow, it follows a practice known as quirks mode. In quirks mode, the
browser follows the original version of the HTML standard, so newer elements
won’t be rendered correctly.

76 BOOK 2 HTML5 and CSS3

Page definition
To create an HTML5 web page, you just define the different elements that appear
on the page. The elements fit together as part of a hierarchy of elements. Some ele-
ments define the different sections of the web page, and other elements contained
within those sections define content.

The html element is at the top of the hierarchy. It defines the start of the entire
web page. All the other elements contained within the web page should appear
between the <html> opening and </html> closing tags:

<!DOCTYPE html>

<html>

web page content

</html>

Most Web pages define at least two second-level elements, the head and the body:

<html>

<head>

head content

</head>

<body>

body content

</body>

</html>

The head element contains information about your web page for the browser. Con-
tent contained within the head element doesn’t appear on the web page, but it
directs things behind the scenes, such as any files the browser needs to load in
order to properly display the web page or any programs the browser needs to run
when it loads the web page.

One element that’s commonly found in the head element content is the title,
which defines the title of your web page:

<head>

<title>My First Web Page</title>

</head>

The web page title isn’t part of the actual web page, but it usually appears in the
browser’s title bar at the top of the browser window or in the window tab if the
browser supports tabbed browsing.

The body element contains the elements that appear in the web page. This is where
you define the content that you want your site visitors to see. The body element

Th
e

Ba
si

cs
 o

f H
TM

L5

CHAPTER 1 The Basics of HTML5 77

should always appear after the head element in the page definition. It’s also
important to close the body element before closing out the html element.

Follow these steps to create and test your first web page:

1. Open the editor, program editor, or integrated development environ-
ment (IDE) package of your choice.

See Book 1, Chapter 3, for ideas on which tool to use.

2. Enter the following code into the editor window:

<!DOCTYPE html>

<html>

<head>

<title>My First Web Page</title>

</head>

<body>

This is text inside the web page.

</body>

</html>

3. Save the code to the DocumentRoot folder of your web server, naming it
mytest.html.

If you’re using the XAMPP server in Windows, the folder is c:\xampp\htdocs.
For macOS, it’s /Applications/xampp/htdocs.

4. Start the XAMPP servers.

5. Open the browser of your choice, and enter the following URL:

http://localhost:8080/mytest.html

Note that you may need to change the 8080 port number specified in the URL
to match your XAMPP Apache server set up (see Book 1, Chapter 2). Figure 1-1
shows the web page that this code produces.

The head element defines the web page title, which as shown in Figure 1-1, appears
in the web browser title bar. The body element contains a single line of text, which
the browser renders inside the browser window area.

You may notice that other than the special <!DOCTYPE> tag, all the other HTML
tags I used are in lowercase. HTML5 ignores the case of element tags, so you can
use uppercase, lowercase, or any combination of the two for the element names
in the tags. The older XHTML standard requires all lowercase tags, so many web
developers have gotten into the habit of using lowercase for tags, and more often
than not, you’ll still see HTML5 code use all lowercase tag names.

78 BOOK 2 HTML5 and CSS3

Page sections
Web pages these days aren’t just long pages of content. They contain some type of
formatting that lays out the content in different sections, similar to how a news-
paper presents articles. In a newspaper, usually there are two or more columns of
content, with each column containing one or more separate articles.

In the old days, trying to create this type of layout using HTML was somewhat of
a challenge. Fortunately, the HTML5 standard defines some basic elements that
make it easier to break up our web pages into sections. Table 1-1 lists the HTML5
elements that you use to define sections of your web page.

FIGURE 1-1:
The output

for the sample
web page.

TABLE 1-1	 HTML5 Section Elements
Element Description

article A subsection of text contained within a section

aside Content related to the main article, but placed alongside to provide additional information

div A grouping of similarly styled content within an article

footer Content that appears at the bottom of the web page

header Content that appears at the top of the web page

nav A navigation area allowing site visitors to easily find other pages or related websites

section A top-level grouping of articles

Th
e

Ba
si

cs
 o

f H
TM

L5

CHAPTER 1 The Basics of HTML5 79

Although HTML5 defines the sections, it doesn’t define how the browser should
place them in the web page. That part is left up to CSS styling, which I talk about
in Chapter 2 of this minibook.

When you combine the HTML5 section elements with the appropriate CSS3 styl-
ing, you can create just about any look and feel for your web pages that you want.
Although there’s no one standard, there are some basic rules that you can follow
when positioning sections in the web page. Figure 1-2 shows one common layout
that I’m sure you’ve seen used in many websites.

Just about every web page has a heading section at the top of the page that iden-
tifies it to site visitors. After that, a middle section is divided into three separate
areas. On the left side is often a navigation section, providing links to other pages
in the website. On the right side is often additional information or, in some cases,
advertisements. In the middle of the middle section is the meat of the content
you’re presenting to your site visitors. Finally, at the bottom of the web page is a
footer, often identifying the copyright information, as well as some basic contact
information for the company.

The div element is a holdout from previous versions of HTML. If you need to work
with older versions of HTML, instead of using the named section elements, you
need to use the <div> tag, along with the id attribute to define a specific name
for the section:

<div id="header">

content for the heading

</div>

The CSS styles refer to the id attribute value to define the styles and positioning
required for the section. You can still use this method in HTML5. Designers often
use the div element to define subsections within articles that need special styling.

FIGURE 1-2:
A basic web page

layout using
HTML5 section

elements.

80 BOOK 2 HTML5 and CSS3

A WORD ABOUT WHITE SPACE
Quite possibly the most confusing feature in HTML is how it uses white space. The term
white space refers to spaces, tabs, consecutive spaces, and line breaks within the HTML
code.

By default, when a browser parses the HTML code, it ignores any white space between
elements. So, these three formats all produce the same results:

<title>

My First Web Page

</title>

<title>My First Web Page

</title>

<title>My First Web Page</title>

It's completely up to you which format to use for your programs, but I recommend
choosing a format and sticking to it. That’ll make reading your code down the road
easier, for you or anyone else.

COMMENTING YOUR CODE
Every programming language allows you to embed comments inside the code to help
with documenting what’s going on. HTML is no different. HTML allows you to insert text
inside the HTML document that will be ignored by the browser as it parses the text.

To start a comment section in HTML, you use the following symbol:

<!--

You can then enter as little or as much text as you need to properly document what's
going on in your code. When the comment text is complete, you have to close the
 comment section using the following symbol:

-->

You can place anything between the opening and closing comment tags, including
HTML code, and the browser will ignore it. However, be careful what you say in your
comments, because they can be read by anyone who downloads your web page!

Th
e

Ba
si

cs
 o

f H
TM

L5

CHAPTER 1 The Basics of HTML5 81

Now that you know how to define different sections of the web page, the next sec-
tion discusses how to add content to them.

Looking at the Basic HTML5 Elements
After you define one or more sections in your web page, you’re ready to start
defining content. Adding content to a web page is sort of like working on a car
assembly line. You define each piece of the web page separately, element by ele-
ment. It’s up to the browser to assemble the pieces to create the finished web page.

This section covers the main elements that you’ll use to define content in your
web page.

Headings
Normally, each new section of content in a web page will use some type of head-
ing to make it stand out. Research shows that the first thing site visitors usually
do when visiting a web page is to scan the main headings on the page. If you can’t
attract their attention with your section headings, you may quickly lose them.

HTML5 uses the h element to define text for a heading. It defines six different
 levels of headings. Each heading level has a separate tag:

<h1>A level 1 heading</h1>

<h2>A level 2 heading</h2>

<h3>A level 3 heading</h3>

<h4>A level 4 heading</h4>

<h5>A level 5 heading</h5>

<h6>A level 6 heading</h6>

Although there are six levels of headings in the HTML5 standard, most sites don’t
use more than two or three.

The client browser determines the font, style, and size of the text it uses for each
heading level. Figure 1-3 shows how the Chrome web browser interprets the six
levels of headings.

82 BOOK 2 HTML5 and CSS3

The browser displays each heading level with a decreasing font size. By the time
you get to the sixth heading level, it’s pretty hard to tell the difference between
the heading and normal text on the web page!

Text groupings
There are several HTML5 elements that allow you to group text together into
what are called block-level elements. The browser treats all of the content defined
within the opening and closing tags of a block-level element as a single group.
This allows you to use CSS to style or position the entire block of content as one
piece, instead of having to style or position each element individually.

You can group headings together using a new feature in the HTML5 standard
called a heading group, using the hgroup element:

<hgroup>

<h1>This is the main heading.</h1>

<h2>This is the subheading.</h2>

</hgroup>

The heading group doesn’t change the h1 or h2 elements, but it provides a way
for the browser to interpret the two headings as a single element for styling and
positioning. This allows you to use CSS styles to format them as a single block so
they blend together like a main heading and a subheading.

A web page consisting of sentences just strung together is boring to read and
won’t attract very many site visitors (or may just put them to sleep). In print, we

FIGURE 1-3:
Displaying all six
heading levels in
the Chrome web

browser.

Th
e

Ba
si

cs
 o

f H
TM

L5

CHAPTER 1 The Basics of HTML5 83

group sentences of common thoughts together into paragraphs. You do the same
thing in your web page content by using the p element:

<p>This is one paragraph of text. The paragraph contains two sentences of

content.</p>

Notice that the p element uses an opening tag (<p>) and a closing tag (</p>) to
mark the beginning and end of the grouped text. The browser treats all the text
inside the p element as a single element. When you group the content together,
you can apply styles and positioning to the entire block.

Be careful with the p element, though. The rules of white space that apply to
HTML tags also apply to text inside the p element. The browser won’t honor line
breaks, tabs, or multiple spaces. So, if you have code like this:

<p>

This is one line.

This is another line.

</p>

It will appear in the web page like this:

This is one line. This is another line.

All the extra spaces and the line break are removed from the content. Also, notice
that the web browser adds a space between the two sentences.

If you want to preserve the formatting of the text in the web page, use the pre
element. The pre element allows you to group preformatted text. The idea behind
preformatted text is that it appears in the web page exactly as you enter it in the
code file:

<pre>

This is one line.

This is another line.

</pre>

The browser will display the text in the web page exactly as it appears in the
HTML5 code.

Yet another method of grouping text is the blockquote element. The blockquote
element is often used to quote references within a paragraph. The browser will

84 BOOK 2 HTML5 and CSS3

indent the text contained within the blockquote separate from the normal para-
graph text:

<p>The only poem that I learned as a child was:</p>

<blockquote>Roses are red, violets are blue. A face like yours, belongs in the

zoo.</blockquote>

<p>But that's probably not considered classic poetry.</p>

This feature helps you embed any type of text within content, not just quotes.

Breaks
Because HTML doesn’t recognize the newline character in text, there’s a way to
tell the browser to start a new line in the web page when you need it. The single-
sided br element forces a new line in the output:

<p>

This is one line.

This is a second line.

</p>

Now the output in the web page will appear as:

This is one line.

This is a second line.

Another handy break element is the hr element. It displays a horizontal line across
the width of the web page section.

<h1>Section 1</h1>

<p>This is the content of section 1.</p>

<hr>

<h1>Section 2</h2>

<p>This is the content of section 2.</p>

The horizontal line spans the entire width of the web page block that contains it,
as shown in Figure 1-4.

Sometimes that’s a bit awkward, but you can control the width of the horizontal
line a bit by enclosing it in a section and adding some CSS styling.

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part1 Getting Started with Web Programming
	Chapter 1 Examining the Pieces of Web Programming
	Creating a Simple Web Page
	Kicking things off with the World Wide Web
	Making sense of markup languages
	Retrieving HTML documents
	Styling

	Creating a Dynamic Web Page
	Client-side programming
	Server-side programming
	Combining client-side and server-side programming

	Storing Content

	Chapter 2 Using a Web Server
	Recognizing What’s Required
	The web server
	The PHP server
	The database server

	Considering Your Server Options
	Using a web-hosting company
	Building your own server environment
	Using premade servers

	Tweaking the Servers
	Customizing the Apache Server
	Customizing the MySQL server
	Customizing the PHP server

	Chapter 3 Building a Development Environment
	Knowing Which Tools to Avoid
	Graphical desktop tools
	Web-hosting sites
	Word processors

	Working with the Right Tools
	Text editors
	Program editors
	Integrated development environments
	Browser debuggers

	Part2 HTML5 and CSS3
	Chapter 1 The Basics of HTML5
	Diving into Document Structure
	Elements, tags, and attributes
	Document type
	Page definition
	Page sections

	Looking at the Basic HTML5 Elements
	Headings
	Text groupings
	Breaks

	Marking Your Text
	Formatting text
	Using hypertext

	Working with Characters
	Character sets
	Special characters

	Making a List (And Checking It Twice)
	Unordered lists
	Ordered lists
	Description lists

	Building Tables
	Defining a table
	Defining the table’s rows and columns
	Defining the table headings

	Chapter 2 The Basics of CSS3
	Understanding Styles
	Defining the rules of CSS3
	Applying style rules
	Cascading style rules

	Styling Text
	Setting the font
	Playing with color

	Working with the Box Model
	Styling Tables
	Table borders
	Table data

	Positioning Elements
	Putting elements in a specific place
	Floating elements

	Chapter 3 HTML5 Forms
	Understanding HTML5 Forms
	Defining a form
	Working with form fields

	Using Input Fields
	Text boxes
	Password entry
	Check boxes
	Radio buttons
	Hidden fields
	File upload
	Buttons

	Adding a Text Area
	Using Drop-Down Lists
	Enhancing HTML5 Forms
	Data lists
	Additional input fields

	Using HTML5 Data Validation
	Holding your place
	Making certain data required
	Validating data types

	Chapter 4 Advanced CSS3
	Rounding Your Corners
	Using Border Images
	Looking at the CSS3 Colors
	Playing with Color Gradients
	Linear gradients
	Radial gradients

	Adding Shadows
	Text shadows
	Box shadows

	Creating Fonts
	Focusing on font files
	Working with web fonts

	Handling Media Queries
	Using the @media command
	Dealing with CSS3 media queries
	Applying multiple style sheets

	Chapter 5 HTML5 and Multimedia
	Working with Images
	Placing images
	Styling images
	Linking images
	Working with image maps
	Using HTML5 image additions

	Playing Audio
	Embedded audio
	Digital audio formats
	Audio the HTML5 way

	Watching Videos
	Paying attention to video quality
	Looking at digital video formats
	Putting videos in your web page

	Getting Help from Streamers

	Part3 JavaScript
	Chapter 1 Introducing JavaScript
	Knowing Why You Should Use JavaScript
	Changing web page content
	Changing web page styles

	Seeing Where to Put Your JavaScript Code
	Embedding JavaScript
	Using external JavaScript files

	The Basics of JavaScript
	Working with data
	Data types
	Arrays of data
	Operators

	Controlling Program Flow
	Conditional statements
	Loops

	Working with Functions
	Creating a function
	Using a function

	Chapter 2 Advanced JavaScript Coding
	Understanding the Document Object Model
	The Document Object Model tree
	JavaScript and the Document Object Model

	Finding Your Elements
	Getting to the point
	Walking the tree

	Working with Document Object Model Form Data
	Text boxes
	Text areas
	Check boxes
	Radio buttons

	Chapter 3 Using jQuery
	Loading the jQuery Library
	Option 1: Downloading the library file to your server
	Option 2: Using a content delivery network

	Using jQuery Functions
	Finding Elements
	Replacing Data
	Working with text
	Working with HTML
	Working with attributes
	Working with form values

	Changing Styles
	Playing with properties
	Using CSS objects
	Using CSS classes

	Changing the Document Object Model
	Adding a node
	Removing a node

	Playing with Animation

	Chapter 4 Reacting to Events with JavaScript and jQuery
	Understanding Events
	Event-driven programming
	Watching the mouse
	Listening for keystrokes
	Paying attention to the page itself

	Focusing on JavaScript and Events
	Saying hello and goodbye
	Listening for mouse events
	Listening for keystrokes
	Event listeners

	Looking at jQuery and Events
	jQuery event functions
	The jQuery event handler

	Chapter 5 Troubleshooting JavaScript Programs
	Identifying Errors
	Working with Browser Developer Tools
	The DOM Explorer
	The Console
	The Debugger

	Working Around Errors

	Part4 PHP
	Chapter 1 Understanding PHP Basics
	Seeing the Benefits of PHP
	A centralized programming language
	Centralized data management

	Understanding How to Use PHP
	Embedding PHP code
	Identifying PHP pages
	Displaying output
	Handling new-line characters

	Working with PHP Variables
	Declaring variables
	Seeing which data types PHP supports
	Grouping data values with array variables

	Using PHP Operators
	Arithmetic operators
	Arithmetic shortcuts
	Boolean operators
	String operators

	Including Files
	The include() function
	The require() function

	Chapter 2 PHP Flow Control
	Using Logic Control
	The if statement
	The else statement
	The elseif statement
	The switch statement

	Looping
	The while family
	The for statement
	The foreach statement

	Building Your Own Functions
	Working with Event-Driven PHP
	Working with links
	Processing form data

	Chapter 3 PHP Libraries
	How PHP Uses Libraries
	Exploring PHP extensions
	Examining the PHP extensions
	Including extensions
	Adding additional extensions

	Text Functions
	Altering string values
	Splitting strings
	Testing string values
	Searching strings

	Math Functions
	Number theory
	Calculating logs and exponents
	Working the angles
	Hyperbolic functions
	Tracking statistics

	Date and Time Functions
	Generating dates
	Using timestamps
	Calculating dates

	Image-Handling Functions

	Chapter 4 Considering PHP Security
	Exploring PHP Vulnerabilities
	Cross-site scripting
	Data spoofing
	Invalid data
	Unauthorized file access

	PHP Vulnerability Solutions
	Sanitizing data
	Validating data

	Chapter 5 Object-Oriented PHP Programming
	Understanding the Basics of Object-Oriented Programming
	Defining a class
	Creating an object instance

	Using Magic Class Methods
	Defining mutator magic methods
	Defining accessor magic methods
	The constructor
	The destructor
	Copying objects
	Displaying objects

	Loading Classes
	Extending Classes

	Chapter 6 Sessions and Carts
	Storing Persistent Data
	The purpose of HTTP cookies
	Types of cookies
	The anatomy of a cookie
	Cookie rules

	PHP and Cookies
	Setting cookies
	Reading cookies
	Modifying and deleting cookies

	PHP and Sessions
	Starting a session
	Storing and retrieving session data
	Removing session data

	Shopping Carts
	Creating a cart
	Placing items in the cart
	Retrieving items from a cart
	Removing items from a cart
	Putting it all together

	Part5 MySQL
	Chapter 1 Introducing MySQL
	Seeing the Purpose of a Database
	How databases work
	Relational databases
	Database data types
	Data constraints
	Structured Query Language

	Presenting MySQL
	MySQL features
	Storage engines
	Data permissions

	Advanced MySQL Features
	Handling transactions
	Making sure your database is ACID compliant
	Examining the views
	Working with stored procedures
	Pulling triggers
	Working with blobs

	Chapter 2 Administering MySQL
	MySQL Administration Tools
	Working from the command line
	Using MySQL Workbench
	Using the phpMyAdmin tool

	Managing User Accounts
	Creating a user account
	Managing user privileges

	Chapter 3 Designing and Building a Database
	Managing Your Data
	The first normal form
	The second normal form
	The third normal form

	Creating Databases
	Using the MySQL command line
	Using MySQL Workbench
	Using phpMyAdmin

	Building Tables
	Working with tables using the command-line interface
	Working with tables using Workbench
	Working with tables in phpMyAdmin

	Chapter 4 Using the Database
	Working with Data
	The MySQL command-line interface
	The MySQL Workbench tool
	The phpMyAdmin tool

	Searching for Data
	The basic SELECT format
	More advanced queries

	Playing It Safe with Data
	Performing data backups
	Restoring your data

	Chapter 5 Communicating with the Database from PHP Scripts
	Database Support in PHP
	Using the mysqli Library
	Connecting to the database
	Closing the connection
	Submitting queries
	Retrieving data
	Being prepared
	Checking for errors
	Miscellaneous functions

	Putting It All Together

	Part6 Creating Object-Oriented Programs
	Chapter 1 Designing an Object-Oriented Application
	Determining Application Requirements
	Creating the Application Database
	Designing the database
	Creating the database

	Designing the Application Objects
	Designing objects
	Coding the objects in PHP

	Designing the Application Layout
	Designing web page layout
	The AuctionHelper page layout

	Coding the Website Layout
	Creating the web page template
	Creating the support files

	Chapter 2 Implementing an Object-Oriented Application
	Working with Events
	Bidder Object Events
	Listing bidders
	Adding a new bidder
	Searching for a bidder

	Item Object Events
	Listing items
	Adding a new item
	Searching for an item

	Logging Out of a Web Application
	Testing Web Applications

	Chapter 3 Using AJAX
	Getting to Know AJAX
	Communicating Using JavaScript
	Considering XMLHttpRequest class methods
	Focusing on XMLHttpRequest class properties
	Trying out AJAX

	Using the jQuery AJAX Library
	The jQuery $.ajax() function
	The jQuery $.get() function

	Transferring Data in AJAX
	Looking at the XML standard
	Using XML in PHP
	Using XML in JavaScript

	Modifying the AuctionHelper Application

	Chapter 4 Extending WordPress
	Getting Acquainted with WordPress
	What WordPress can do for you
	How to run WordPress
	Parts of a WordPress website

	Installing WordPress
	Downloading the WordPress software
	Creating the database objects
	Configuring WordPress

	Examining the Dashboard
	Using WordPress
	Exploring the World of Plugins
	WordPress APIs
	Working with plugins and widgets

	Creating Your Own Widget
	Coding the widget
	Activating the widget plugin
	Adding the widget

	Part7 Using PHP Frameworks
	Chapter 1 The MVC Method
	Getting Acquainted with MVC
	Exploring the MVC method
	Digging into the MVC components
	Communicating in MVC

	Comparing MVC to Other Web Models
	The MVP method
	The MVVM method

	Seeing How MVC Fits into N-Tier Theory
	Implementing MVC

	Chapter 2 Selecting a Framework
	Getting to Know PHP Frameworks
	Convention over configuration
	Scaffolding
	Routing
	Helper methods
	Form validation
	Support for mobile devices
	Templates
	Unit testing

	Knowing Why You Should Use a Framework
	Focusing on Popular PHP Frameworks
	CakePHP
	CodeIgniter
	Laravel
	Symfony
	Zend Framework

	Looking At Micro Frameworks
	Lumen
	Slim
	Yii

	Chapter 3 Creating an Application Using Frameworks
	Building the Template
	Initializing the application
	Exploring the files and folders
	Defining the database environment

	Creating an Application Scaffold
	Installing the scaffolding
	Exploring the scaffolding code

	Modifying the Application Scaffold
	Adding a new feature link
	Creating the controller code
	Modifying the model code
	Painting a view

	Index
	EULA

